
www.manaraa.com

UNIVERSITY OF CALGARY

Ontology-Guided Collaborative Concept Learning in Multiagent Systems

by

Mohsen Afsharchi

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

CALGARY, ALBERTA

APRIL, 2007

c© Mohsen Afsharchi 2007

www.manaraa.com

Library and Archives
Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l’édition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre référence
ISBN: 978-0-494-26226-9
Our file Notre référence
ISBN: 978-0-494-26226-9

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.
.

AVIS:

L’auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l’Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author’s permission.

L’auteur conserve la propriété du droit d’auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

Bien que ces formulaires aient inclus dans
la pagination, il n’y aura aucun contenu
manquant.

www.manaraa.com

Abstract

Traditionally, communication among agents has been established based on the group

commitment to a common ontology which is unfortunately often too strong or un-

realistic. In the real world of communicating agents, it is preferred to enable agents

to exchange information while they keep their own individual ontology. While this

assumption makes agents to represent their knowledge more independently and gives

them more flexibility, it adds to the complexity of communication. We believe that

agents can overcome this complexity by using their learning capability. The agents

can learn any concepts they don’t know but want to communicate about from other

agents in the multi-agent system they are working in. Our goal in this thesis is to

present a general method for agents using ontologies to teach each other concepts

to improve their communication and therefore, cooperation abilities. In our method

a particular agent which understood a concept only ambiguously intends to learn it

by receiving positive and negative examples for that concept from the other agents.

Then, utilizing one of the known concept learning methods, the agent learns the

concept in question. This learner agent ask the other agents again to get involved

in the learning process by taking votes in case of conflicts in the received set of ex-

amples. While this method allows agents not to share common ontologies it enables

agents to establish common grounds on concepts known only to some of them, if

these common grounds are needed during cooperation. In fact, the learned concepts

by an agent are compromise among the views of the other agents and in addition,

the method improves the autonomy of agents using them significantly.

i

www.manaraa.com

Acknowledgements

A journey is easier when you travel together. This thesis is the result of four years

of work whereby I have been accompanied and supported by many people. It is a

pleasant aspect that I have now the opportunity to express my gratitude for all of

them.

The first person I would like to thank is my direct supervisor Dr. Behrouz Homay-

oun Far. I owe him lots of gratitude for having me shown this way of research. His

intuition and insight are only matched by his genuine warmth and human compas-

sion. Besides of being my supervisor, Behrouz was as close as a relative and a good

friend to me. I am really glad that I have come to get know Dr. Far in my life.

I would like to thank my unofficial co-supervisor Dr. Jörg Denzinger who kept

an eye on the progress of my work and always was available when I needed his

advices. During these years I have known Dr. Denzinger as a sympathetic and

principle-centered person. His overly enthusiasm and integral view on research and

his mission for providing ‘only high-quality work and not less’, has made a deep

impression on me.

I also thank the other supervisory committee members, Dr. Reda Alhajj and

Dr. Diwakar Krishnamurthy for their encouragement and support.

My sincere thanks go to the Ministry of Science, Research and Technology of

Islamic Republic of Iran, for granting me scholarship and study leave to carry out

research towards the PhD degree. As well, I offer my thanks to IBM Corporation

which has partially supported and funded my research through UIMA program.

Thanks to my many fantastic friends and fellow graduate students, especially

ii

www.manaraa.com

iii

Keivan Kianmehr, for their support and help.

I feel a deep sense of gratitude to my family. For my mother who supported me

when I was alone and taught me the good things that really matter in life. The

happy memory of my late father and brother still provides a persistent inspiration

for my journey in this life. I am grateful for my sister Athar and my brother Masood,

for rendering me the sense and the value of grace. Thank you for being there when

I was absent.

Last but not least, I want to mention my wife, Maryam Seifaee. I am very

grateful for her, for her love and patience during the PhD period and for her genuine

motherhood for our two little beautiful angels: Fatemeh and Saba. There is no way

I can ever thank Maryam properly for everything that she has done to support me.

Instead I offer every meaning I can think of for the phrase, “Without you, I would

not be here right now.”

www.manaraa.com

iv

This thesis is dedicated to my loving wife, Maryam

and my children Fatemeh and Saba

www.manaraa.com

Table of Contents

Abstract i

Acknowledgements ii

Dedication iv

Table of Contents v

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Motivation . 2

1.1.1 Feature Diversity . 3
1.1.2 Learning from a Group of Agents 6

1.2 System Overview . 8
1.3 Thesis Overview . 11

2 Basic Definitions 13
2.1 Agents . 13

2.1.1 Agents in this Dissertation . 16
2.2 Ontologies . 17

2.2.1 Diverse Ontologies . 20

3 Background 22
3.1 Ontology, Conceptualization and the Essential Ontological Promiscu-

ity of AI . 22
3.2 Multi-agent Learning Systems . 25
3.3 Approaches to Agents Training another Agent 27

3.3.1 Learning to Share Meaning 27
3.3.2 The Origins of Ontologies and Communication Conventions . 31
3.3.3 Sharing and Mutual Learning of a Concept 35
3.3.4 ANEMONE: Concept Explication to Improve Communication 37

3.4 Information Integration . 39
3.4.1 Approaches to Semantic Integration 41

v

www.manaraa.com

vi

4 Learning from a Group of Teachers: Our Approach 45
4.1 Fundamentals . 45

4.1.1 Problem Definition . 46
4.1.2 Notations . 47
4.1.3 Key Assumptions . 48

4.2 The General Interaction Scheme . 49
4.3 The Initial Query . 52
4.4 Finding the Best Known Concept . 53
4.5 Selecting Positive and Negative Examples 55

4.5.1 Random Selection of Positive Examples 56
4.5.2 Using the Taxonomy to Select Negative Examples 57

4.6 Improving the Quality of Advice . 58
4.6.1 Negative Example Selection Using an is-similar-to Relation 59
4.6.2 Positive Example Selection by Discriminative Feature Selec-

tion and Example Ranking . 61
4.7 Learning and Integration of New Concepts 66

4.7.1 Learning of a New Concept Using a Concept Learner 67
4.7.2 Conflict Resolution . 68
4.7.3 Pre-Structuring of the Learner’s Ontology 70

4.8 Non-unanimous Concept Ontologies 72
4.8.1 Non-unanimous Concepts . 73
4.8.2 Learning Non-unanimous Concepts 75
4.8.3 Using Non-unanimous Concepts in Group Communications . . 76

5 An Example Application 80
5.1 Problem Domain . 80

5.1.1 Concepts in Domain . 81
5.1.2 Objects in Domain . 81
5.1.3 Feature Preparation for Example Representation 84

5.2 Ontology Construction . 88
5.3 Concept Learners . 91
5.4 Naive Bayes Concept Learner . 91
5.5 Rocchio Concept Learner . 94
5.6 Agent Architecture . 96

5.6.1 Actions for Agents . 97
5.6.2 Components and their Responsibilities 101

6 Experiments 104
6.1 Concept Formation . 105

6.1.1 Learning of Concept “Greek” 106

www.manaraa.com

vii

6.1.2 Learning of Concept “Computer Science” 110
6.2 Concepts in Action . 115
6.3 Comparison of Concept Learners . 121
6.4 Better Concepts Using Improved Example Selection 122

6.4.1 Using more Than the Taxonomy 124
6.4.2 Using more Distinctive Positive Examples 128

6.5 Evaluation of Conflict Resolution Strategies 132
6.6 Non-unanimous Concepts: a Case Study 136

6.6.1 Group Communication: An Example 138

7 Conclusion and Future work 142
7.1 Summery . 143
7.2 Contributions . 147

7.2.1 Agents with Diverse Set of Features 147
7.2.2 A Group of Agents Teaching One Agent 148
7.2.3 Non-unanimous Concepts . 148

7.3 Future Directions . 149
7.3.1 Learning Relations . 149
7.3.2 Ontology Reorganization . 150
7.3.3 Applying Concepts . 150

Bibliography 151

www.manaraa.com

List of Tables

4.1 Description of notations . 48

5.1 Domain characteristics . 81
5.2 Example features and their probabilities 95
5.3 Description of message types . 102

6.1 Usage of key words in features . 109
6.2 Usage of key words in features for Computer Science 113
6.3 Truly classified examples for concepts Mathematics, Computer Science

and Greek . 116
6.4 Comparison of the performance of AgL and AgM 119
6.5 Comparision of the performance of AgL and AgW 119
6.6 Comparision of the performance of AgL and AgC 120
6.7 Tabular representation of comparison of negative example selection

mechanisms for Mathematics . 127
6.8 Tabular representation of comparison of negative example selection

mechanisms for Greek . 128
6.9 Tabular representation of comparison of negative example selection

mechanisms for nine concepts . 128
6.10 Comparison of positive example selection mechanisms for Greek . . . 129
6.11 Comparison of positive example selection mechanisms for Mathematics129
6.12 Comparison of positive example selection mechanisms for nine concepts130
6.13 Conflict resolution evaluation for Mathematics 134
6.14 Conflict resolution evaluation for Computer Science 135
6.15 Some positive example statistics . 136
6.16 Examples of courses(objects) in ccore, cown, and cperiphery 137
6.17 Examples of courses(objects) in ccore, cown, and cperiphery 139

viii

www.manaraa.com

List of Figures

1.1 Sequence of processes in agents . 10

4.1 Flat representation of example space 56
4.2 Negative examples using the taxonomy 59
4.3 Negative examples using the taxonomy and is-similar-to relation 60
4.4 A Non-unanimous Ontology Concept 73
4.5 Visualization of Conflict Resolution 76

5.1 Specific concept VS more general concepts in AgM 82
5.2 Two example objects representing Biological Anthropology concept 83
5.3 Keywords for Computer Science and Greek using DF and X 2 statistics 86
5.4 A snapshot from Protege showing a part of ontology for AgW 89
5.5 OWL format for ontology . 90
5.6 The essential components for the agent teaching/learning concepts . . 98

6.1 Relevant taxonomy paths of teachers for Greek 107
6.2 Formation of the learned concept Greek regarding key words when

different agents participate in teaching. a) AgC as teacher b) AgC

and AgM are teachers c) AgC , AgM and AgW are teachers 108
6.3 Relevant taxonomy paths of teachers for Computer Science 112
6.4 Formation of Computer Science regarding key words when different

agents participate in teaching. a) AgC as teacher b) AgC and AgM

are teachers c) AgC , AgM and AgW are teachers 114
6.5 Comparison of concept learners for Mathematics 122
6.6 Comparison of concept learners for Computer Science 123
6.7 Comparison of concept learners for Greek 123
6.8 Comparison of negative example selection mechanisms for Mathematics126
6.9 Comparison of negative example selection mechanisms for Greek . . . 126
6.10 Comparison of negative example selection mechanisms for nine concepts127
6.11 Graphical representation of comparison of positive example selection

mechanisms for Greek . 131
6.12 Graphical representation of comparison of positive example selection

mechanisms for Mathematics . 132
6.13 Graphical representation of comparison of positive example selection

mechanisms for nine concepts . 133

ix

www.manaraa.com

Chapter 1

Introduction

This dissertation addresses a new approach to solve the semantic heterogeneity prob-

lem in multi-agent systems where individual autonomous agents learn ontology con-

cepts from several teacher agents to better communicate and share information in

the future. In this thesis we introduce a novel multi-agent concept learning where

there are several teacher agents that are not committed to any common conceptual-

ization. The result of this research shows that the learning of new concepts among

individual agents with diverse conceptualizations and different background knowl-

edge (e.g. ontology) is achievable. Although for one specific concept, there are many

conceptualizations which have been formed based on agents’ view points, it is as-

sumed that these diverse conceptualizations have some overlap which are apparent

in their knowledge representation (e.g. similarity in examples or features).

This work is founded on the essential ontological promiscuity of artificial intelli-

gence: any conceptualization of the world is accommodated, and is invented (by an

agent) based on its utilization [GN87]. Therefore, in order for agents with diverse

ontologies or views of the world to share knowledge, they must be able to learn how

to understand each other’s conceptualization of the world. Previous works mostly

not only assumed a common language among agents, but also a complete common

understanding of all the concepts the agents communicate about.

Recently, the idea of having agents learn concepts (or languages) from other

agents has been suggested as a solution to the problems above [Wil04], [Ste98]. In

1

www.manaraa.com

2

this thesis we broaden the existing approaches in two different directions. First we

assume that every agent can come with different sets of features which are used by

the agent to observe the world and conceptualize it. We additionally assume that

there are only some base features that are known, and respectively can be recognized

by all agents with the same meaning. Second, we develop this work based on a real

multi -agent system with real data in which a learner agent learns a concept from

a group of agents rather than one peer agent. In this situation the learner can

get confused, when the teachers are not unanimous about a concept. This thesis

addresses the conflict resolution mechanism as well as learning and communicating

about non-unanimous ontology concepts.

Our method of learning ontology concepts has been developed and evaluated in

the course catalog ontology domain [UIl]. The result of this thesis extends our

understanding of group learning of ontology concepts when a group of agents teach

a concept to a learner agent. The results of the experiments conducted for this

thesis have provided insight into the learning of a concept when the teachers and

learner are utilizing different but overlapping set of features to characterize concepts

of the world (see [AFD06b], [AF06]). Besides, as a direct consequence of multi-agent

learning we see the formation of non-unanimous ontology concepts and propose a

way for agents to communicate better by using them (see [AFD06a]).

1.1 Motivation

The main and very strong fact that motivated us to start this work was the huge

amount of works deviating from the essential ontological promiscuity of AI. We argue

www.manaraa.com

3

that in order to have agents communicate better and share knowledge they should

be able to learn how to understand each other. Due to the fact that this issue

has been generally addressed in only very few works, we followed two more specific

motivations. First, we believe that one reason for agents to have diverse ontologies is

the different set of features that they use to represent and conceptualize the world and

another reason is the different viewpoints that agents have to organize the concepts

and categorize them. This means two agents may differ in their ontologies in two

dimensions: the set of features representing the concepts and the set of relations

that connect concepts to each other. Therefore agents should be able to learn each

other’s conceptualization despite using different but overlapping sets of features as

well as different sets of relations that connect concepts to each other. Our second

motivation is the nature of heterogeneous multi -agent system: agents communicate

with more than one agent, therefore they should learn how to understand the group’s

conceptualization of the world. The general idea of ontological diversity of agents has

been addressed in very few works and we review them in Chapter 3. Feature diversity

of the agents and group collaboration among agents are our motivating principles

in this thesis. In fact, these motivating principles are our main contributions and

therefore we discuss them in more detail in the following subsections.

1.1.1 Feature Diversity

No matter how an agent conceptualizes the world, it is important to realize that

there are other conceptualizations as well. Furthermore, there need not be any cor-

respondence between the set of features representing an object or generally a concept

in one conceptualization and the set of features in another. This dispensability of

www.manaraa.com

4

correspondence is one reason that causes agents to have diverse ontologies.

A very common model for knowledge representation is feature based representa-

tion. In this model of representation, agents use a set of features to represent the

world. This set is usually called feature vector [Nil98]. For each feature in the vector

we have its domain which is a set of values that defines possible values the feature

can have. Then an object is characterized by a unique combination of the features.

To characterize a concept by using feature values, we denote a concept by a set of

possible values for the features. Therefore an object which is an instance of a concept

is covered by the concept.

Depending on the environment that an agent is deployed in, the feature vector

differs. For example, for a physical agent the sensory inputs define the feature vector.

An agent using a camera or color sensors might have some features representing the

color of the objects it observes. For instance, the agent might have the feature color

and {red, blue, white} as the values set. As another example, for information

agents that are deployed in the World Wide Web environment, the feature vector

might be the set of keywords representing a document that the agent focuses on

(i.e. object). Such a representation is sometimes also referred to as the bag of words

representation [Mit97], since usually relative position of terms in the document is

not captured in the resulting vector.

As a result of the above discussion, every agent may have its own set of features

to represent the world. Apparently, these features can be different from one agent

to another based on the sensory input of the agent, design goals or the deployment

environment. In some cases one agent’s conceptualization of the world is “impossi-

ble” to be understood by another agent. A famous example of this is when an agent

www.manaraa.com

5

conceptualizes an object using its color. This conceptualization can not be under-

stood by another agent which has no hardware to sense the colors. In other cases

one agent’s conceptualization of the world is “difficult” to be understood by another

agent. Again an agent that can sense grayscales, can not distinguish the colors but

using some transformations it is possible to understand another agent that uses color

to conceptualize the world.

In this thesis we assume that there are only some base features that are known,

respectively can be recognized by all agents. Also we assume that there are only some

base concepts that are known to all agents by their names, their feature values for the

base features and the objects that are covered by them. Outside of this base common

knowledge, individual agents may come with additional features they can recognize

and additional concepts they know. Agents might refer to the same such features

and concepts by different names and they may have features and concepts that have

the same name but are not the same. We believe that this feature diversity makes

the whole scenario of learning real and in fact resembles the process of a human

being’s learning.

We should point out that it is relatively easy to construct scenarios in which

these ideas may not be very useful. What these scenarios have in common is that

the teacher agents do not only disagree on what concepts fulfill a particular com-

munication, their ontologies and their perception of the world, i.e. their feature sets

for representing the world are totally different. As a result, their attempts to teach

an agent results in a total confusion. If, for example, all teacher agents associate

with a particular concept totally different real concepts, then the learning agent will

not be able to get useful concepts out of their information. Clearly, also a human

www.manaraa.com

6

agent would find it impossible to learn useful information from the teachers in this

situation. In this dissertation we have chosen an area where the teacher agents have

some differences in their “world view”, simply because there are different ways how

to represent and organize the objects in the world, but where there is nevertheless a

large agreement on many things.

From the point of view of knowledge representation one interesting part of ontolo-

gies are the relations that a particular ontology allows. This is also the part where

we see a lot of differences between different “world views”. In general, all possible re-

lations between tuples of concepts can be used in ontologies, but usually researchers

assume a small set of built-in relations (e.g. sub-concept and super-concept) and

tool developers sometimes throw in the possibility to have (limited) user-defined re-

lations (e.g. is-similar-to). But unfortunately, different ontologies can use the

same relation identifiers for different build-in relations, so that there is quite some

confusion in this area. So, if we have agents using ontologies over the same universe

of discourse then it is very likely that either they use different relations or they or-

ganize concepts, using the same set, in different ways. In this thesis while all the

ontologies used by the agents will use as taxonomy the “subset” relation, agents may

use different other relations in their ontologies and two agents cannot rely on the

same relation identifiers referring to the same relation and vice versa, again.

1.1.2 Learning from a Group of Agents

Regarding concept learning in multi-agent environments almost all researchers have

looked at one agent teaching another agent a concept [Wil04], [Ste98], [Sen02]. At

first glance, learning from a group of agents instead of a single agent only seems to

www.manaraa.com

7

add potential problems, namely the teachers might not agree on some aspects of a

concept to learn so that it is up to the learning agent to decide on these aspects

on its own. This has the consequence that the concept that the learner has learned

is some kind of compromise between the concepts the teachers teach. Would it

not be better to learn from just one teacher at a time and to make sure that the

learning agent learns exactly the concept of this teacher? But what if this learner

has to communicate with several other agents? Naturally, the learner could learn the

necessary concepts from each of these agents one by one and then it has an ontology

that has concepts like “concept X according to agent Y” and “concept X according

to agent Z”. As pointed out in [JvD06], it is a rather large effort to create such an

ontology. But even more, it does not really solve the problem of how to communicate

with all the agents at once (in a kind of broadcast or multi-cast situation). Being

able to address a group of people is a necessity of human communication. The

way human beings deal with the fact that listeners (or readers) might have slightly

different interpretations of the concepts is often to have an idea where everyone

agrees and where there is potential for misunderstandings. Then people address the

potential misunderstandings by providing more details of their understanding via

explanation, examples, etc.

In this thesis, we present the novel idea of non-unanimous ontology concepts

that allows us to express different “shades” of agreements on a particular concept

based on what an agent learns from a group of teacher agents. Also we provide an

environment to enable agents to learn such non-unanimous concepts that represent

a whole spectrum of possible definitions for a concept. The basic idea is to let the

learning agent query its teachers regarding the new concept. Depending on how

www.manaraa.com

8

teacher agents agree about the queried concept the learner agent creates boundaries

for the learned concept. The core boundary is around the area that there is no conflict

among agents regarding the objects in this area. The periphery boundary is the area

that covers all teacher agents’ viewpoints. Therefore every objects that even only one

agent think belongs to the concept is in this boundary. The learner agent itself then

chooses a concept definition that encompasses the core and is itself encompassed by

the periphery which we call its own understanding. When communicating about this

particular concept, the agent uses its awareness of the differences between its own

definition, the core and the periphery to enhance the usage of the concept name with

explicit references to objects in the periphery but not in the core that are relevant

to the communication.

1.2 System Overview

As stated before, the goal of this thesis is to develop a methodology to let an agent

learn new concepts and accommodate it in its ontology with the help of other agents.

Given the fact that agents have not so much common knowledge, they will develop

problems in working together, since the common grounds for communication are not

there or are too small. To solve this problem, agents need to acquire the concepts

outside of the base concepts that other agents have, at least those concepts that

are needed to establish the necessary communication to work together on a given

task. Our basic idea is to have an agent learn required concepts (or at least a good

approximation) with the help of the other agents.

Figure 1.1 a) shows the sequence of tasks that the learner accomplishes in the

www.manaraa.com

9

process of ontology concept learning. The learner agent, AgL, initiates the learning

process by querying the teacher agents about a concept, cgoal, that it wants to learn.

In order to initiate the initial query, AgL first needs to become aware that there is

a concept that it needs to learn. An example of a scenario that can lead to this

realization is when AgL deals with a set of objects that share certain feature values

and it wants to know if other agents know more about the similarities of these objects.

The query can have up to three parameters: concept identifier which is unlikely to be

the same in different agents, a selection of features and the values that AgL thinks

are related to the concept or a set of objects that AgL thinks are covered by the

cgoal.

Lets turn our attention to the teacher agent. Its tasks are presented in Figure 1.1

b). After receiving the query the teacher agent, Agi, starts to answer the query by

finding the best known concept. Therefore Agi has first to collect all the concepts

that fulfill the query into a candidate set and then it has to evaluate all these concepts

to determine the concept that is, in its opinion, the best fit. According to the

parameters of the query, the procedure of selecting the candidate concept may vary.

But generally the teacher agent tries to find concepts that cover a good portion of the

query parameters. There are many different ways how evaluation of the candidates

can be performed. Each of the 3 query parts can contribute to a measure that defines

what is “good”, and how these contributions are combined can be realized differently.

A very important part of the methodology in this thesis is that the agents learn

concepts from a set of positive and negative examples. Consequently the teacher

agents should send a set of positive and negative examples to the learner in order to

enable the learner agent to learn the concept cgoal. Since each agent Agi stores for

www.manaraa.com

10

Learn Concept

Make Non
Unanimous Concept

Send Answer Back

Query Teachers

Resolve Possible
Conflicts

Receive Query

Search for Best
Concept

Select Positive and
Negative Examples

Improve Examples
Quality

a) The Learner Agent

Collect Answers

b) The Teacher Agent

Figure 1.1: Sequence of processes in agents

each concept a set of positive examples, i.e., a set of objects covered by the concept,

coming up with positive example objects for a concept known toAgi is not a problem.

While the more examples normally are the better, in our case we have to take into

account that the more objects are selected, the more expensive the communication

becomes and the more effort AgL will have to spent on learning. Selecting negative

examples for a concept is not as straightforward. The set of negative examples for a

concept is the set of objects covered by all concepts excluding the example objects

from the queried concept. This can be a very large set and usually different elements

of this set provide the learner with a different quality of advice. The large set of

www.manaraa.com

11

possible negative examples in addition to the communication cost impose on the

teacher agents to intelligently select a subset of positive and negative examples to

provide the learner agent with a better quality of advise. After creating the set of

positive and negative examples and putting them in the reply package, the teacher

agent adds some information regarding the path that leads in its ontology to the

queried concept and the subtree below it and send it back to the learner.

Returning back to the learner, AgL is ready to learn from the set of positive and

negative examples which are collected from several teachers. Learning a concept, in

form of feature values, from a set of positive and negative examples is a problem

that is very well researched in literature and there are many algorithms and systems

available for this task [Mit97]. With the set of positive and negative examples,

AgL has the necessary input for such a learning system, with one potential problem:

conflicts among the teacher agents. Due to the differences among agents it can easily

happen that the two best concepts that two teachers identified do not have much

in common. There are several ways to solve this problem and these ways lead the

learner agent to make a non-unanimous concept which allows the learner agent to

produce different degrees of willingness to satisfy the teacher agents.

1.3 Thesis Overview

In Chapter 1, we have outlined the basic problem which this research addresses. We

have delineated our research goals, and made clear what we think are our contribu-

tions.

In Chapter 2, we define the general notions that we use throughout this thesis.

www.manaraa.com

12

We give semi-formal definitions for agent, ontology, and concepts.

In Chapter 3, we explore the literature related to “agent teaching concepts to

another agent” approaches in both the traditional AI context and new applications.

For each related work we highlight aspects that are not addressed by the authors.

The methodology for our novel approach to multi-agent concept learning is pre-

sented in Chapter 4. This includes both a general interaction scheme and the different

realizations for each step of this general interaction scheme.

Chapter 5 contains the details for an instantiation of our abstract concepts for

agents representing and communicating about university courses and how they relate

to university units. This includes a high-level description for our implementation

of agents, ontology construction, and our adaptation of known concept learners.

In addition, we explore our definition of features in the problem domain of our

instantiation.

In Chapter 6 we present some experiments that we have conducted to prove that

concept learning from a group of agents with diverse ontologies is achievable. In

addition we compare different realizations of each of the steps that we have proposed

in our methodology.

Finally, Chapter7 contains a summery of the research presented in this thesis,

and some suggestions for the direction of future work.

www.manaraa.com

Chapter 2

Basic Definitions

2.1 Agents

Generally an agent is a system that can be viewed as perceiving its environment

through sensors and acting upon that environment through effectors. A human

agent has eyes, ears, and other organs for sensors, and hands, legs, mouth, and other

body parts for effectors. A robotic agent substitutes cameras and infrared range

finders for the sensors and various motors for the effectors. A software agent has

encoded bit strings as its percepts and actions [RN95].

While there is no agreed-upon definition for artificial agents, most of the texts

in the field agree on a general architecture. In a very general form it is defined as a

mapping function from perceived sequences to actions. In this dissertation, inspired

from [DE02] we assume an agent Ag as

Ag = (Sit,Act,Dat,fAg)

Sit is a set of situations the agent can be in which means the agent’s world can be

in any one of a set Sit of situations (or states). The representation of a situation

naturally depends on the agent’s sensory capabilities. Different agents can have

different effectory capabilities. To characterize these effectory capabilities, we assume

the existence of a set Act of actions, all of which can be performed by the agent we

are describing. We define a function fAg as a mapping that maps each situation into

an action. This function is called effectory function [GN87] and is defined as

13

www.manaraa.com

14

fAg : Sit×Dat→ Act

We further assume that the agent can be in any one of a set Dat of internal states.

While there is no need for internal states in a simple case, the ability to retain

information internally is extremely useful in general. Therefore there should be a

memory update action in Act that maps an internal state to another internal state.

This defines an agent by exploring its internal structure. There are other definitions

which categorize agents based on their behaviors.

Russel and Norvig divided agents into four different types based on their behavior

regarding the agents’ internal states and goals [RN95]: simple reflex agents, agents

that keep track of the world, goal-based agents and utility-based agents.

In a simple reflex agent activity at any moment is determined entirely by their

environment at that moment. In these agents Dat simply includes a set of condition-

action rules. Upon arrival of a new stimulus agents use a rule whose condition

matches the current situation and then perform the action associated with that

rule. The simple reflex agent will work only if the correct decision can be made

on the basis of the current world state. In many cases, the agent may need to

maintain some internal state information in order to distinguish between world states

that generate the same perceptual input but nonetheless are significantly different.

Here, “significantly different” means that different actions are appropriate in the two

states. Updating this internal state information as time goes by requires two kinds of

knowledge to be encoded in the agent. First, we need some information about how

the world evolves independently of the agent. Second, we need some information

about how the agent’s own actions affect the world. These agents that keep track of

www.manaraa.com

15

the world are also called hysteric agents [GN87].

Knowing about the current state of the environment is not always enough to

decide what to do. In fact, as well as a current state description, the agent needs

some sort of goal intonation, which describes situations that are desirable. The goal-

based agent can combine this with information about the results of possible actions

in order to choose actions that achieve the goal. Sometimes this will be simple, when

goal satisfaction results immediately from a single action; sometimes, it will be more

tricky when the agent has to consider long sequences of twists and turns to find a

way to achieve the goal.

Goals alone are not really enough to generate high-quality behavior. Goals just

provide a crude distinction between “happy” and “unhappy” states, whereas a more

general performance measure should allow a comparison of different world states

(or sequences of states) according to exactly how happy they would make the agent

if they could be achieved. Because “happy” does not sound very scientific, the

customary terminology is to say that if one world state is preferred to another, then it

has higher utility for the agent. Utility is therefore a function that maps a state onto

a real number or a value measured by an ordinal scale, which describes the associated

degree of happiness. A complete specification of the utility function allows rational

decisions in two kinds of cases where goals have trouble are not enough. First, when

there are conflicting goals, only some of which can be achieved, the utility function

specifies the appropriate trade-off. Second, when there are several goals that the

agent can aim for, none of which can be achieved with certainty, utility-based agents

provide a way in which the likelihood of success can be weighed up against the

importance of the goals.

www.manaraa.com

16

2.1.1 Agents in this Dissertation

For the agents that we are interested in, we can instantiate the general definition of

this dissertation with some extensions. We want to focus on the knowledge repre-

sentation used by agents, so we start by looking more closely at Dat. We assume

that every element of Dat of an agent Ag contains an ontology area OAg as we will

define in the next subsection that represents the agent’s view and knowledge of con-

cepts. For the concepts in the taxonomy of OAg there might be additional data, that

the agent requires from time to time. Naturally, there will be additional data areas

representing information about the agent itself, knowledge about other agents and

the world that the designer of the agent may want to be represented differently than

in OAg. In the rest of this thesis, we will concentrate on how the agent uses and

manipulates just the ontology part of Dat.

The actions of an agent depends a lot on the application area the agent is de-

signed for. We require our agents to be able to communicate with other agents

using information from the agent’s ontology and to manipulate this ontology based

on information received from other agents and the agent’s own deduction actions

that include actions performing learning. We will provide more information in the

following sections.

An element of Sit usually contains parts representing observations of other agents

and of the environment the agent is in. In this thesis, we assume that among the

observations of an agent are all messages sent by other agents since the last situation

an agent was in. And we will specify the parts of fAg that deal with the relevant

messages and the relevant knowledge in and around the ontology of an agent in

www.manaraa.com

17

Chapter 4.

2.2 Ontologies

To clearly define “ontology” we should first define “conceptualization”. While pure

AI texts use ontology and conceptualization interchangeably [GN87], in recent years

many articles from the knowledge sharing and reuse community consider an ontology

as an explicit specification of a conceptualization [Gru93]. In this section we will

first briefly describe what conceptualization is and then give a formal definition for

ontologies. 1

According to [GN87], the formalization of knowledge in a declarative form begins

with a conceptualization. Generally, a conceptualization is a triple consisting of a set

of concepts, a functional basis set for that set of concepts and a relation basis set.

The notion of a concept used in this description is quite broad. In short, a concept

can be anything about which the agent wants to know or say something. Not all

knowledge-representation tasks require that we consider all the objects in the world;

in many cases, only those concepts in a particular set are relevant. A function is

one kind of interrelationship among the concepts. Again for a given set of concepts,

in conceptualizing a portion of the world we usually emphasize some functions and

1Many of the solutions to the knowledge sharing, integration and reuse problems have focused
on using a common ontology for different knowledge sources and a commitment of the working
agents to this shared conceptualization. Inherent in all of these efforts is a changed version of
the ontology definition. While Gruber [Gru93] defined ontology as “an explicit specification of
conceptualization”, many recent works added the word “shared” to it which changed the definition
to “an explicit specification of a shared conceptualization”. Accepting this definition makes our
research insignificant. Nevertheless we argue that although using a common ontology is a method
to solve the knowledge integration and agent communication problem, it is very important to notice
that this is not an intrinsic part of any solution to the problem and as we will discuss later the
essential promiscuity of AI emphasizes on the diversity of the ontologies of intelligent agents.

www.manaraa.com

18

ignore others. A relation is the second kind of interrelationship among concepts. As

we do with functions, in conceptualizing a portion of the world, we emphasize some

relations and ignore others.

This informal definition of conceptualization is very nicely reflected in Stumme’s

formal definition of ontology which is as follows [Stu02]:

Definition 1. A core ontology is a structure

O := (C,≤C , R, σ,≤R)

consisting of

• two disjoint sets C and R where the elements of C are called concept identifiers

and the elements of R are so-called relation identifiers,

• a partial order ≤C on C which is called concept hierarchy or taxonomy

• a function σ : R→ C+ which is called signature

• a partial order ≤R on R which is called relation hierarchy, where for every r1,

r2 ∈ R with r1 ≤R r2 and for every projection πi (1 ≤ i ≤ |σ(r1)|) of the

vectors σ(r1) and σ(r2) we have |σ(r1)| = |σ(r2)| and πi(σ(r1)) ≤C πi(σ(r2)).

Concept identifiers and relation identifiers are usually called concepts and relations.

Almost all relations in practical use are binary. For those relations, we define their

domain and their range.

Definition 2. For a relation r ∈ R with |σ(r2)| = 2 we define its domain and its

range by dom(r) := π1(σ(r)) and range(r) := π2(σ(r)).

www.manaraa.com

19

If c1 ≤C c2 for c1, c2 ∈ C, then c1 is called a subconcept of c2 and c2 is a

superconcept of c1. If there is no c3 ∈ C, such that c1 <C c3 <C c2, and c1 <C c2

then c1 is a direct subconcept of c2 and c2 a direct superconcept of c1.

By viewing an ontology O as a structure on top of a set of concepts and a set

of relations, this definition is able to cover a lot of the definitions of ontologies in

the literature, but without providing a more precise definition of what concepts

are, we are far from anything that can be used by agents to provide a basis for

communication.

Many works in databases and machine learning define concepts as collections of

objects that share certain feature instantiations. In this work we will follow this

example. In the following, we assume that we have a set F = {f1, ..., fn} of features

and for each feature fi we have its domain Di = {vi1, ..., vimi
} that defines the

possible values the feature can have. Then an object o = ([f1 = v1], ..., [fn = vn]) is

characterized by its value for each of the features (often one feature is the identifying

name of an object and then each object has a unique feature combination). By U we

denote the universe of discourse which is the set of all (possible) objects. In machine

learning, often every subset of U is considered as a concept. In this thesis we want

to be able to characterize a concept by using feature values. Therefore, a symbolic

concept Ck is denoted by Ck = ([f1 = V1], ..., [fn = Vn]) where Vi = {v′i1, ..., v′iji
} ⊆ Di

(if Vi = Di then we often omit the entry for fi). An object o = ([f1 = v1], ..., [fn =

vn]) is covered by a concept Ck, if for all i we have vi ∈ Vi. In an ontology according

to the definition above, we assign a concept identifier to each symbolic concept that

we want to represent in our ontology.

Apparently, the relation ≤C is supposed to be connected with how concepts are

www.manaraa.com

20

defined. In the literature, taxonomies are often build using the subset relation, i.e.

we have

Ci ≤C Cj iff for all o ∈ Ci we have o ∈ Cj.

This definition of ≤C produces a partial order on C as defined above and we will use

this definition in the following for the ontologies that our agents use.

From the point of view of knowledge representation the really interesting part of

ontologies are the relations in R that a particular ontology allows. This is also the

part where we see much differences among different authors. In general, all possible

relations between tuples of concepts can be used in ontologies, but usually researchers

assume a small set of build-in relations and tool developers sometimes throw in

the possibility to have (limited) user-defined relations. But unfortunately, different

ontologies can use the same relation identifiers for different build-in relations, so

that there is quite confusion in this area. Therefore, if we have two systems build by

different developers using ontologies over the same set U then it is very important

to either identify those relations that occur in both ontologies or to find ways how

the knowledge contained in the (usage of) relations in one ontology can be used in

communications between the two systems. In this thesis, we will show such a usage

for one relation that we have called is-similar-to with σ(is-similar-to) ∈ C2.

2.2.1 Diverse Ontologies

As stated above, agents do not always commit a priori to a common pre-defined

global ontology. This naturally assumes that not all agents have the same ontology

(otherwise learning in the sense described in this thesis would not be necessary). To

www.manaraa.com

21

clarify what we mean by “diverse ontologies” we revisit the definition of ontology.

We say two agents Agi and Agj have different ontologies if at least one member of

the tuple T =< C,R, σ,≤R> differs from one ontology to another. Therefore there

are four reasons for ontologies to be distinctive, so we represent the ontology for Agi

as Oi = (Ci,≤C , Ri, σi,≤Ri
) and the ontology for Agj as Oj = (Cj,≤C , Rj, σj,≤Rj

).

The first reason for ontology diversity is having different sets of concepts. Ci

and Cj could be different simply because they could have different members. Agents

might refer to the same concept by different names or they may have concepts that

have the same name but different meanings. The later case is very likely because

we assumed that the agents could use diverse feature sets to conceptualize the world

and this allows agents to have diverse ontologies. Ri and Rj also could be different

and in fact relations between concepts could be another source of distiction between

ontologies. Also two ontologies could have the same set of concepts and relations

but they also could differ in the way that they use relations to associate two or more

concepts. This happens when two ontologyies have different σ’s. We assume the

same partial order ≤C for ontologies because usually researchers use sub-concept

and super-concept relations to build a taxonomy. While we believe that ≤R could

be different in ontologies we have no emphasis on it in this dissertation.

www.manaraa.com

Chapter 3

Background

The communication among agents is an inherent characteristic of multi-agent sys-

tems. Agents committing to a common and shared ontology can communicate with-

out any misunderstandings. Nonetheless Artificial Intelligence emphasizes on on-

tological diversity of intelligent agents which in fact resembles human beings. In

this thesis we tackle the problem of communication among agents which have no

commitment to any common ontology.

This chapter will look at the different areas that address this problem and the

different proposed solutions. We begin with some discussions about ontologies and

conceptualizations and the essential promiscuity of AI. We then review the proposed

solutions based on concept learning and ontological evolution. Because many other

works have tried to solve a similar problem in the information retrieval domain, in

the final section, we present a survey of the different solutions to the problem which

is called “semantic heterogeneity of knowledge sources”.

3.1 Ontology, Conceptualization and the Essential Ontolog-

ical Promiscuity of AI

An agent, whether representing a human being, an intelligent computer program, or

a robot has a view of its world that enables it to understand it. In Artificial Intelli-

gence (AI), this view of an agent’s world has been referred to as its conceptualization

22

www.manaraa.com

23

or ontology [GN87], [Gru91]. The knowledge of an agent has been represented

through various declarative or procedural forms such as predicate logic, produc-

tion rules, nonmonotonic systems, statistical reasoning systems, semantic networks,

conceptual dependency and frames [RK91]. Declarative knowledge consists of a

conceptualization which includes the objects or concepts presumed to exist in the

world, their functions and relations [GN87]. The set of objects about which knowl-

edge is expressed is referred to as the universe of discourse. According to [GN87],

given a conceptualization (i.e. objects, functions, and relations) knowledge can be

formalized as sentences in a language appropriate to conceptualization. Examples

of languages used to represent knowledge include propositional calculus, predicate

calculus or even natural language.

Historically, ontology has referred to the philosophical study of being, or what

exist [Gru91]. In AI ontology deals with categories we can quantify over and how

those categories relate to each other [RK91]. A truly global ontology specifies at

a very high level what kinds of things exist and what their general properties are.

Gruber [Gru91] refers to ontology as a specification of a conceptualization. In this

dissertation, ontology and conceptualization will be used interchangeably. One dis-

tinction that will be made for this research is that an ontology includes a conceptual-

ization, or view of the world, as well as the learning and inferencing mechanisms for

manipulating knowledge about the world. Inherent in these definitions of ontology is

a method for representing and interrelating the objects or concepts into a hierarchy

of concept types according to different levels of generality. In a semantic network

representation this is called a type hierarchy, taxonomic hierarchy or a subsumption

hierarchy [Woo91]. In a frame-based representation system, this concept hierarchy

www.manaraa.com

24

would be represented as inheritance rules.

These conceptual taxonomies, loosely referred to as ontologies, can be useful for

indexing and organizing information and for managing the resolution of conflict-

ing concepts [Woo91]. Earlier works in knowledge representation demonstrated the

ability to automatically classify a structured concept with respect to a taxonomy

of other concepts. Classification, according to Woods [Woo91], is the operation of

assimilating a new description into a taxonomy of existing concepts by automatically

linking it directly to its most specific subsumers and the most general concepts that

it in turn subsumes. Stumme [Stu02] nicely reflected these properties in the formal

definition which we have discussed in Chapter 2.

Every individual human being or knowledge-based program or agent creates or

learns an ontology either explicitly or implicitly. According to [GN87] these ontolo-

gies are created and justified solely based on their utilization in the different tasks or

domains and there is no commitment to a pre-existed ontology. This lack of commit-

ment indicates the essential ontological promiscuity of AI : Any conceptualization of

the world is accommodated, and agents seek those that are useful for their purpose.

Different knowledge-based programs have different underlying ontologies used

to represent knowledge in their domains. The DARPA Knowledge Sharing Effort

(KSE) [FFMM94] realized that various knowledge-based programs could not share

knowledge because they were based on different ontologies. Researchers associated

with the KSE effort sought to allow re-use of knowledge bases by creating common

ontologies in order to share knowledge. Some of the results of this effort include

the Knowledge Interchange Format (KIF) which is based on an extension of the

first order predicate calculus, and Ontolingua [Gru93]. Gruber [Gru91] describes

www.manaraa.com

25

an approach to using a common ontology to enable AI programs to share knowledge

bases and use them as modular components. His definition of a common ontology is

vocabularies of representation terms, such as classes, relations, functions, and object

constants, with agreed upon definitions, in human readable text and with machine-

enforceable, declarative constraints on their well-formed use. According to Gruber

and Olsen [GO94], the ontology vocabulary defines the ontological commitments

among agents that are agreements to use the shared vocabulary in a coherent and

consistent manner. This is where the approach for sharing knowledge in this thesis

diverges from the Knowledge Sharing Effort approach. We argue that not all agents

share a commitment to the same ontology so we must find ways for them to share

knowledge by teaching each other semantic concepts from their own point of view.

3.2 Multi-agent Learning Systems

Multi-agent learning literature mainly has sprung from historically somewhat sepa-

rate communities notably reinforcement learning, dynamic programming, robotics,

evolutionary computation and complex systems and is tended to the special com-

munity that it is applied [PL05]. We consider it as discipline that addresses the

traditional machine learning algorithms that have been extended to work in a sys-

tem of distributed, learning agents. Multi-agent learning can be defined as improving

the group problem solving performance at a given set of tasks through their collective

experience in the problem domain. Our multi-agent learning research deals with a

system of agents that learn individually as well as collectively.

Cooperative multi-agent learning in literature has been divided into two major

www.manaraa.com

26

categories: team learning and concurrent learning [PL05] which are named differently

in [Wei99] as centralized learning and decentralized learning though their meanings

are somehow the same. Team learning applies a single learner to search for behav-

iors for the entire team of agents. Such approaches are more along the lines of the

traditional machine learning methods. Concurrent learning uses multiple concurrent

learning processes and rather than learning behaviors for the entire team, concurrent

learning approaches typically employ a learner for each team member, in the hope

that this reduces the joint space by projecting it into separate spaces. However,

the presence of multiple concurrent learners makes the environment non-stationary,

which is a violation of the assumptions behind most traditional machine learning

techniques. For this reason, concurrent learning requires new (or significantly mod-

ified versions of) machine learning methods.

While team and concurrent learning cover the majority of works in multi-agent

learning, as we will show, we think our work can not be classified into either of

these classes. That is mostly because the learning itself in our work is not MAS

learning but it is the rather standard learning of a single agent. The MAS aspect

of our work resides in the fact that an agent is taught by several other agents.

Though there has been considerable research on agents learning concurrently or

cooperatively [PLL96], [PH96] or learning by imitating a teammate’s behavior [DE02]

or even learning by observing an opponent’s behavior [SRV00], [LASB04] there has

been little work in which an agent pro-actively trains other agent. The most relevant

work comes from one learner telling another agent what portions of the search space

to ignore [PH96] or a teacher agent shares experience [BSSD00], problem-solving

traces or even learned policies [Tan97] with another concurrent learner.

www.manaraa.com

27

In this chapter we put the emphasis on the approaches to learning or teaching

methods regarding agents training other agents. More specifically, we consider works

in which agents learn or teach concepts rather than behaviors.

3.3 Approaches to Agents Training another Agent

In this section we review the paradigm of multi-agent learning when one or more

agents try to teach a concept to another agent. Different works utilized different

terminology (e.g. speaker and hearer, trainer and trainee) to address the learner

agent and the teacher agents. To keep our terminology unified we use “learner”

and “teacher” to address the agent that learns from other agents and teach another

agent, respectively.

3.3.1 Learning to Share Meaning

Williams has developed DOGGIE (Distributed Ontology Gathering Group Integra-

tion Environment), a system to demonstrate how a multi-agent system can assist

groups of people in locating, translating, and sharing knowledge [Wil04]. He as-

sumes agents with diverse ontologies that may use different terms to refer to the

same meaning or the same term to refer to different meanings. He argues that agents

with this setting will need a method for learning and translating similar semantic

concepts between diverse ontologies. Williams’ work tries to propose solutions to

the following three questions: 1) how do agents determine if they know the same

semantic concepts?, 2) how do agents determine if their different semantic concepts

actually have the same meaning?, and 3) how can agents improve their interpretation

www.manaraa.com

28

of semantic objects by learning discriminating attributes? It also evaluates proposed

methods to assess the group performance at a given collective task. Since DOGGIE

is closely related to our proposed research it is important to point out the similarities

and differences.

Williams assumes a distributed collective memory (DCM) which covers the entire

set of concrete objects that exist in the world at a unique location and is accessible

by any agent but is only selectively conceptualized by each agent which naturally

means not every agent has every object in its conceptualization. He also defines a

set of objects that can be grouped to form an abstract object as a class and enables

agents to use inductive supervised machine learning mechanisms to learn a target

function to map individual concrete objects to a particular class. Then he refers to

this target function as a concept description of a class. He further assumes agents use

a knowledge structure that can be learned using objects in the distributed collective

memory.

The main goal of Williams’ approach is to enable agents to locate and learn

similar semantic concepts. The result of this learning is a kind of group knowledge

in the form of “one agent knows that another agent knows a particular concept”.

To achieve this goal Williams has gone through two separate procedures: learning

similar semantic concepts and learning key missing descriptors. The first procedure

enables agents to locate the similar semantic concepts in acquaintance agents and

to translate the similar semantic concepts. The second procedure which eventually

results in better locating and translating of similar concepts, is a method to find

some key features which discriminate similar concepts.

To locate a similar concept an agent queries acquaintance agents by sending them

www.manaraa.com

29

the name of the semantic concept and pointers to some sample semantic objects in

the distributed collective memory. The acquaintance agents receive the query and

use their learned representations for their own semantic concepts to infer whether

or not they know the same semantic concept. As stated before, agents in DOGGIE,

use an inductive machine learning algorithm to learn a concept descriptor for each

concept. Acquaintance agents use this concept descriptor to see if they know a similar

concept or not. If an acquaintance agent knows or may know that semantic concept,

it returns a sample of pointers to its corresponding semantic concept. The original

querying agent receives the responses from the acquaintance agents and attempts

to verify whether or not the other agents know a similar semantic concept. It does

this again by using the concept descriptor it has learned before. If the original

querying agent verifies the acquaintance’s semantic concept, then it incorporates

this applicable group knowledge into its knowledge base. This group knowledge is,

in essence, “My acquaintance agent X knows my concept Y”.

Williams argues that two similar semantic concepts may not have overlapping

semantic objects in the distributed collective memory. If this is the case, the target

function learned using supervised inductive learning for agent A’s semantic concept

descriptions, and agent B’s target function may have different key discriminating

descriptors, or attributes, in them. Then he proposes a Recursive Semantic Context

Rule Learning (RSCRL) to enable agents to learn discriminating attributes which

consequently improves similar concept interpretation.

Here we highlight some aspects of Williams’ work and briefly introduce another

realization for each aspect. In Chapter 4 we will show how our work is different from

Williams’ work regarding these aspects. Firstly, Williams’ approach is a method for

www.manaraa.com

30

agents to share a meaning. Agents have learned the semantic concepts and then

try to learn if other agents know concepts similar to their concepts. Therefore if

an agent does not know a concept nothing will happen. In DOGGIE, as a result

of learning, agents gain the meta knowledge in the form of rules describing what

semantic concepts another agent in the MAS knows. The only result of the learning

that affect the understanding of the concept by any agent is the learning of some

discriminating features. By contrast, agents can learn a new concept from scratch.

The knowledge resulting from the learning could be a description of the new concept

by a set of features and their values and from a set of positive and negative examples

taught by a group of acquaintance agents.

Secondly, Williams assumes that every agent knows every feature describing ob-

jects in the distributed collective memory. Consequently in the process of learning

key missing descriptors, agents learn the missing attributes (i.e. feature in our con-

text) and it is assumed that these attributes are completely understandable by every

agent. As a different approach, agents can use different features to conceptualize

the world and learn the concepts. Therefore each agent could have a set of features

which may have or have not an overlap with other agents’ sets of features and could

individualize its learning by this unique set of features.

Also in Williams’ work the collaboration between agents is restricted to agent

to agent communication rather than a full multi -agent activity. In DOGGIE one

agent tries to know if one other agent knows a similar concept. There is no explicit

hint regarding how an agent can learn a concept from a group of agents. One can

argue that multi-agent collaboration can be considered as a sequence of agent to

agent collaborations, nevertheless, in this case a very important question is what

www.manaraa.com

31

will happen if there exist some contradiction between the communicating agents.

As we will show in Chapter 4 our approach is a complete multi-agent collaboration

where the learner agent learns a concept from multiple agents and in case of any

conflicts there are mechanisms for conflict resolution.

In addition to the above mentioned major aspects, we should highlight some

minor aspects. Williams only uses positive examples to enable agents to share a

meaning, while we believe that a better approach is to use positive and negative ex-

amples to describe a concept. Also an ontology in Williams’ work is a flat repository

of concepts while in a more comprehensive approach an ontology could be considered

as a conceptual hierarchy and utilize the relation between concepts to improve the

learned concept quality.

3.3.2 The Origins of Ontologies and Communication Conventions

Steels describes an innovative evolutionary computation approach that enables a

multi-agent system to converge to a common ontology (i.e. in fact ontology in this

work is a shared lexicon rather than a hierarchical structure of concepts) using a

language game [Ste98]. His research addresses a different, albeit important, problem

of ontology consensus. That is, how can other agents converge to using a common

ontology, or a shared lexicon, in what he refers to as a winner-take-all situation. To

achieve this goal he proposes an adaptive systems approach to the formation of an

ontology and the evolution of a shared lexicon in a group of distributed agents with

only local interactions and no central control authority.

Steels first assumes that there is no central controlling agent and coherence arises

in a bottom up and self-organized fashion. He also assumes that the language com-

www.manaraa.com

32

munity is open and new agents may enter at any time. In addition he assumes

that conventions are adaptive. This means new meanings may enter at any time

and the group develops the appropriate lexicalizations as needed. The adaptation

assumption is also true for the ontologies.

Steels models an interaction between two agents as a game and because it involves

language he calls it a language game. This game involves a teacher and a learner

and assumes that the teacher wants to identify an object to the learner given a

particular context of other objects. In order to perform a communication, the teacher

must conceptualize the objects so as to find a description which distinguishes the

topic from the other objects in the context. This requires an ontology, which is

considered as a set of distinctions. This demand for an ontology requires the agent

(i.e. teacher) to create its ontology through discrimination games. A discrimination

game involves an agent, an object and a set of other objects and tries to find some

features that discriminate between an object and other objects. Then this set of

discriminating features which are created based on some sensory channels makes the

conceptualization of the agent regarding the specific object that Steels calls topic.

After making the ontology the teacher must find words to encode the distinctive

features thus found, and transmits these words to the learner. This is a way that

the agents use to find a shared lexicon for an object. Next, the learner receives

the transmitted message, decodes it into one or more possible interpretations, and

checks whether the interpretations are compatible with the present situation. The

game succeeds if this is the case. Failure may be due to 1) missing objects in the

ontology of the teacher or learner, or 2) missing or wrong linguistic conventions. In

each case the agent engages in a repair action. New descriptions for objects are

www.manaraa.com

33

created by extending the ontology, in other words by creating a new distinction or

refining an existing distinction. New linguistic conventions are created by creating a

new word or by adopting the word used by the teacher. Agents record the success of

words and prefer words that had the most success. This causes coherence to emerge

because the probability that a word is used increases if more agents adopt it. Agents

also record the success of using a distinction. If a distinction is used often and has

been successfully lexicalized it has a higher chance to remain in the population of

possible distinctions. The coordination of ontology creation and lexicon formation

in a single agent and in a multi-agent system happens by co-evolution. There is an

information flow and selectionist pressure in either directions. The ontology creation

produces distinctions which are lexicalized. Lexicalization is successful if the word

is also used by other agents.

In a very simple statement, Steels allows agents to create their ontology by expe-

riencing their environment. Then using a mechanism which he calls language game

agents cooperatively evolve a common set of lexicons for the objects in their ontology.

As the title of his work suggests, Steels’ work is an attempt to discover what is the

origin of ontologies in a multi-agent system and how agents develop the conventions

to communicate about their ontologies.

As we stated before Steels research addresses the problem of ontology consensus.

That is, how other agents can converge to using a common ontology, or a shared

lexicon. However, as we will show in Chapter 4 our work recognizes that agents may

often want to maintain their own diverse ontology but still be able to learn a new

concept from different viewpoints of other agents or teach a new concept to them.

This allows for each agent to maintain control over its own ontology but still be

www.manaraa.com

34

able to improve communication with other agents. Although these agents start off

with diverse ontologies, their goal is not to converge to a common one because we

believe that learning ontology concepts is only one source of ontology evolution in a

multi-agent system.

There is no explicit hint in Steels work showing that the agents use different

sensory channels to conceptualize an object. Therefore in case of one agent not

being able to discriminate an object with its set of features, it evolves its feature set

toward the set which is common for all agents. For agents with different perceptions,

this should pose problems which our approach does not have and we do not require

for agents to evolve their feature sets to a common set of features. As we stated

before an agent in our work individualizes its learning by the unique set of features

it has.

Similar to Williams’ work, the collaboration between agents is restricted to agent

to agent communication rather than a full multi -agent activity. The language game

described in Steels’ work relies on the teacher and learner agents determining whether

they use the same name to describe a single object and, obviously, there will be no

conflict in this case.

The language game in Steels’ work also relies on describing a single object but not

a class of objects (i.e. concept). This is because Steels uses primarily evolutionary

learning techniques to learn a language. As we will show, our approach uses machine

learning techniques to allow for teaching a concept to an agent. Last but not least,

the emphasis of Steels’ work is more on language rather than concepts.

www.manaraa.com

35

3.3.3 Sharing and Mutual Learning of a Concept

Sen proposed a general architecture for an agent teaching agent environment which he

called ATA (i.e. Agent Teaching Agent) framework [Sen02]. In the ATA framework,

he addresses the problem of transfer of knowledge between a teacher and a learner

agent and the knowledge being transferred is a concept description. A concept

description is a boolean-valued function that classifies input examples as members

or non-members of the target concept. He also assumes that the teacher agent does

not have access to the internal knowledge representation of the learner agent, but can

observe its concept recognition abilities by providing examples and non-examples of

a concept and observing the performance of the learner agent.

He claims that a teacher agent can guide the learning process of a learner agent

by observing the latter’s problem solving performance. This means that based on

the success and failure of the learner in classifying given examples, the teacher can

choose an appropriate sequence of training examples to guide the learning process

of the learner. In the ATA framework, the teacher agent first acquires the target

concept from its interaction with an environment, and using its learning module.

This learning process produces a target concept description in the internal knowledge

representation format of the teacher agent. The teacher agent also has a training

module which interacts with the learner module and provides successive training and

testing sets to train and evaluate the progress in learning of the learner agent. The

learner learns its own concept description from the set of classified training examples

provided by the teacher. It also classifies each of the unclassified test examples

provided by the teacher and returns these classified instances to the teacher for

www.manaraa.com

36

evaluation.

The ATA framework uses an iterative training procedure in which alternatively

the teacher selects a set of training and testing examples. The learner trains using

the training set and then classifies the testing set, the teacher observes errors made

by the learner in classifying the instances in the last testing set and accordingly

generates the next training and testing set. This iterative process converges when

learner error falls below a given thresholds.

Sen’s proposed work is a real concept learning/teaching framework in which the

teacher agent uses examples to teach a concept to the learner agent . Nevertheless,

his work like previously mentioned works has two major weaknesses. First Sen

assumes that every agent knows every features describing concepts being learned

and consequently in the proposed framework all agents must use the same feature

set to learn concepts. Second, in the ATA framework the collaboration between

agents is restricted to agent to agent communication rather than a full multi -agent

collaboration.

Because the teacher agent in the ATA framework uses examples to teach the

concept in an iterative way, it needs to specify procedures for selection of the initial

training and testing sets, and the generation of the next test set based on the mistakes

made by the learner on the current test set. In ATA, when selecting the initial

training and testing instances, the goal is to select the most discriminating examples

that help identify regions of the input space that do and do not belong to the target

concept. When selecting the next set of training and testing instances, the goal is

to first isolate the mistakes made on the previous test set, and for each of these

instances, find a few neighboring points, using some of them as training data and

www.manaraa.com

37

the rest as test data.

As we will show in Chapter 4, similar to Sen, we use the general idea of selec-

tion of most discriminating positive examples to improve the quality of the concept

that is being learned, except that he used the distances between examples to select

most discriminating ones and we select examples based on the most discriminating

features. Besides, Sen has not explicitly mentioned the way that he selected the neg-

ative examples that he used to teach a concept. Also ATA uses a flat repository of

concepts as the ontology of the agents, while ontologies of our agents are conceptual

hierarchies. This allows us to enable agents to use relations between concepts to

select better negative examples.

Gasser’s work [WG02] regarding a framework for Mutual Online Concept Learn-

ing (MOCL) is basically a slightly different version of Sen’s work. Though his empha-

sis is placed on instance selection, in contrast to Sen’s work, there is no pre-existing

concept, and hence the learners are peers rather than a teacher-learner pair.

3.3.4 ANEMONE: Concept Explication to Improve Communication

Diggelen et.al. [JvD06] developed ANEMONE which is an minimal ontology nego-

tiation environment. ANEMONE, which was originally developed to overcome the

problem of a lack of shared ontologies, proposes a layered communication protocol

and enables agents to gradually build towards a semantically integrated system by

establishing minimal and shared ontologies.

The upper layer of the protocol which is called Normal Communication Protocol

(NCP) deals with normal agent communication, i.e. the kind of social interaction

which agents normally exhibit when no ontology problems exist in the system. To

www.manaraa.com

38

deal with ontology problems, two layers are added to the protocol: a protocol for

exchanging concept definitions or Concept Definition Protocol (CDP), and Concept

Explication Protocol (CEP) for teaching concepts to each other using machine learn-

ing techniques.

In the concept definition protocol, the teacher tries to convey the meaning of a

concept by stating the taxonomical relations with other concepts just by sending the

set of parents and children of a concept (i.e. using the subconcept and superconcept

relation). If these definitions enable the hearer to derive the complete meaning of

the concept, the hearer switches back to NCP. An agent considers the meaning of an

acquired concept complete, if it knows the relation with every other concept in its

ontology. If there is not a sufficient number of shared concepts available to convey

the complete meaning, the agents switch to CEP. The purpose of CEP is to convey

the meaning of a concept when no satisfactory definition of the concept in terms of

other concepts can be given. ANEMONE assumes that the meaning of a concept

can be conveyed to another agent by pointing to instances. The speaking agent

(i.e. teacher), upon explicating a concept, communicates a number of positive and

a number of negative examples of the concept. The hearer (i.e. learner) classifies

these examples using the concept classifiers from its own ontology. For each concept,

the agent calculates the True Positive Rate (TPR) which is the number of positively

classified positive examples divided by the total number of positive examples and

the True Negative Rate (TNR) which is the number of negatively classified negative

examples divided by the total number of negative examples and uses this information

to assess the concept relation which finally results in a mapping between concepts.

A very important point about ANEMONE is that it is not a concept learning

www.manaraa.com

39

environment, rather it is an environment which facilitates ontology mapping between

two agents in a minimal way using a layered approach. Like other related works that

we reviewed before, ANEMONE does not talk about feature diversity and it is not

a multi -agent collaboration. While ANEMONE uses positive and negative examples

to assist agents to find mappings between ontology concepts, it does not describe the

way of selecting positive and negative examples.

3.4 Information Integration

The main goal of this thesis is to find a method to enable the agents to communicate

even if they are semantically heterogeneous. Accordingly we give the agents the

ability to dynamically change their ontology by learning new concepts. There is a

similar problem in the information retrieval domain which in some manners is related

to our problem. Because data or information can be retrieved from many different

sources, such as databases, the World Wide Web, knowledge bases, and other specific

information systems, integration of heterogeneous information sources is necessary

in order to answer user queries. This means that different information sources should

be able to relate their understanding of data (i.e. ontology or schema) to each other.

Finding the relation between concepts from the diverse information sources leads

us to some different methods of mapping or merging or other ways of integration,

which is somehow close to our research. In this section we explore different ways of

semantic integration that we think are related to our work.

According to [She99] the heterogeneity problem can be classified into four lev-

els: 1) the system level heterogeneity is about the physical layer of the systems

www.manaraa.com

40

such as incompatible hardware, network communication etc, 2) the syntactical level

heterogeneity refers to the different data representations or languages used, 3) the

structural level heterogeneity refers to the different data models used, and 4) the se-

mantic level heterogeneity refers to the meaning of the concepts defined. There are

many technologies (for example, CORBA, DCOM, XML technologies, or other mid-

dleware software products) developed to solve the first three levels of heterogeneity,

while semantic heterogeneity requires more complicated methods and satisfactory

solutions have yet to emerge.

A standard way to achieve information integration is to build a global schema

(schema is usually used to refer to ontology in the information retrieval domain)

over all the related heterogeneous information sources, then user queries will point

to this global schema. This global integrated schema approach is often used in fed-

erated databases and data warehousing, and is sometimes called “data warehousing

approach” [VH01]. In general, it is very difficult to construct a global schema from

individual database schemas, and even harder for other kinds of information sources.

Also, if any of the existing information sources is changed, the global schema needs

to be constructed all over again, this is inefficient and a waste of the computational

resources.

An alternative “on-demand driven” [VH01] approach is to answer user queries

and other requests on-demand by combining or joining information obtained from

different sources at runtime based on the mediator architecture [Wie97], [Mel00],

[AK97]. A common data model about the application domain and a common query

language based on this model is required. This approach is more scalable, flexible

and dynamic. Two methods are commonly used in this approach. The first one is

www.manaraa.com

41

an “eager” paradigm, which collects all data together before answering any queries,

while the second is a “lazy” approach, which postpones information collection to

the query evaluation stage. Most systems existing today prefer the “lazy” approach,

since it is more scalable, and easier to maintain consistency. However, at the core of

both methods are algorithms for information combination or translation.

3.4.1 Approaches to Semantic Integration

Different applications may use terms to reflect the semantics of concepts in their do-

main differently, or they have different conceptualizations about different domains, or

even about the same domain. Several kinds of conflicts or mismatches of terms exist.

The same term or concept name might have different meanings in different concep-

tualizations; different terms from different conceptualizations might have the same

meaning; or one term might match to several terms of another conceptualization;

or one term from one conceptualization does not match any in another conceptu-

alization exactly; or two terms with the same or similar meaning are structured

differently in different conceptualizations (e.g., different paths from their respective

root concepts). All these conflicts belong to the scope of the semantic heterogeneity

problem in the information retrieval domain and must be solved. This can be done

in several possible directions depending on the needs of particular applications.

Using a Single Centralized Global Ontology

Similar to the global schema for databases, if a single centralized global ontology

is defined for the application domain, all agents or computer programs in commu-

nication use terms from this ontology. This is the most traditional way to achieve

www.manaraa.com

42

semantic integration, but it is likely that not all the agents trust this ontology or

agree with it totally, and it is very unpleasant and inflexible that agents can not

define their own small ontologies according to their own points of view about the

domain. Like the global schema, this approach suffers the cost of constructing and

maintaining such global ontology. Gruber [Gru93] identifies many aspect of the

knowledge sharing problem that are not addressed by common ontologies. Ques-

tions not addressed include how groups of people can reach consensus on common

conceptualizations, and how terms can be defined outside their context of use given

that agents have commitments to different tasks, representation tools, and domains.

While many AI related systems such as KIF [GF92] and Ontolingua [Gru93] have

established a common set of ontology description primitives, recent works which are

mainly related to the Semantic Web [BLHL01] have focused on different methods for

developing and utilizing common ontologies [SGH04].

Merging Source Ontologies into a Unified Ontology

In general, ontologies defined on a common domain by different applications will have

a lot of overlap, so merging the source ontologies into one unified ontology before

agent interactions is a natural way to fulfill semantic integration among these appli-

cations. A manual ontology merging process can be used for small ontologies, but

it will be difficult for large-scale ontologies. Automatic or semi-automatic ontology

merging methods are necessary. One way to find two terms to be merged can be

based on spelling, linguistics or natural language processing techniques with manual

validation [Hov98], [SM01]. Most of the tools developed today are based on syntactic

and semantic heuristics [Hov98], [NM00] , some also use a description logic based

www.manaraa.com

43

approach [Hov98]. This ontology merging method for integration is costly and not

quite scalable. When any of the knowledge sources is modified, the merging process

may need to be repeated. Also, in case of a large number of knowledge sources, a

merging result may not be good at all or simply impossible to obtain.

Searching a Set of Mappings Between two Ontologies

Instead of trying to merge two source ontologies, finding a set of mappings be-

tween them is an alternative way to achieve semantic integration. A mapping can

be defined as a correspondence between concept A in ontology 1 and concept B

in ontology 2 which has similar or the same semantics as A. In some existing sys-

tems, human experts specify a set of mappings between two ontologies manually;

others try to find a mapping between two terms totally based on lexical relations

in linguistic or lexical ontologies such as WordNet [KS99], Cyc, SENSUS [Gua97].

By attaching a set of documents to each node to represent its meaning, there are

some methods that adopt machine learning text classification techniques to get a

similarity measure matrix of two ontologies and search for mappings based on this

matrix [MDHD02], [LG01], [SPF02]. There are tools based on ontology algebra

and articulation [MWK00], [MW04]. There are also some heuristic or rule based

approaches being used, sometimes combined with the structure information of the

taxonomy [NM03]. Two recent works published are information-flow-based ontology

(i.e. taxonomy) mappings [KS02] which draws on the proven theoretical ground

of information flow and channel theory, and a graph matching algorithm based on

fixpoint computation called “similarity flooding” [SM02]. Most of the existing on-

tology mapping approaches are semi-automatic and heuristic [MDHD02]. Automatic

www.manaraa.com

44

ontology mapping is hardly possible, since an ontology is very subjective and human

intervention is always needed to give some initial suggestions to validate machine-

produced mappings.

Ontology Translation

Given two ontologies, ontology translation is to translate one of the ontologies into

a target ontology which uses the representation and semantics of the other ontology,

sometimes with the help of an intermediate shared ontology. Ontology translation

is a very difficult problem. Some tools have been developed for ontology translation,

including Ontomorgh [Cha00] and OntoMerge [Dou04]. Based on a set of defined

rules and transformation operators, Ontomorph [Cha00] offers syntactic rewriting

and semantic rewriting to support the translation between two different knowledge

representation languages.

Although many of works in the information integration domain have some com-

mon ideas with our work, they do not cognitively address the learning and evolution

of one ontology. These approaches assume ontologies of different knowledge sources

as static inputs to the algorithms they utilized while our approach assumes an in-

telligent environment in which agents can make decisions, learn and vote and conse-

quently advise another agent in the learning process. Compared with this domain,

our two main novel approaches in having agents with different set of features and

multi -agent teaching/learning even look more interesting.

www.manaraa.com

Chapter 4

Learning from a Group of Teachers: Our

Approach

This chapter contains an abstract description of our approach to agents teaching

other agents concepts using positive and negative examples. Throughout this chap-

ter, we reference to our application domain to clarify abstract concepts.

First, we begin with addressing some fundamentals and give a precise definition

of the problem. Second, we describe the general process of learning and introduce

our general interaction scheme. Third, as a major part of the general interaction

scheme we explore the process of selecting positive and negative examples and present

variant realizations to provide examples with different quality. Finally we introduce

non-unanimous concepts and discuss our method to enable agents to learn them and

to communicate using them.

4.1 Fundamentals

We begin by addressing some fundamentals to provide a basis for discussion of our

approach. These fundamentals are the problem definition, the introduction of nota-

tions and key assumptions.

45

www.manaraa.com

46

4.1.1 Problem Definition

In a multi-agent environment, due to the ontological diversity of agents, individual

agents may create ontologies suitable for their own problem solving needs even if

they are describing the same world or domain. An agent may not want to commit

to an ontology a priori in order to facilitate future communication and sharing of

its knowledge. The agent may “selfishly” create its own ontology in order to explain

concepts relevant to its own problem solving needs within its domain. To put it in a

more formal way, we consider a group of n agents Ag1, ...,Agn which are committed

to the following common knowledge:

• a subset Fbase of some base features that can be recognized by all agents.

• a set of some base symbolic concepts Cbase that are known to all agents by

name, their feature values for the base features and all the objects that are

covered by them.

• all the ontologies used by the agents will use as taxonomy the subset-relation.

Outside of this base common knowledge, individual agents may come with additional

features they can recognize and additional concepts they know. Agents might refer to

the same such features and concepts by different names and they may have features

and concepts that have the same symbolic name but are not semantically equivalent.

Also they may use different relations in their ontologies and two agents cannot rely

on the same relation identifiers referring to the same relation and vice versa. Given

this setting, agents will develop problems in working together, since the common

grounds for communication are not there or too small. In order to solve this problem,

www.manaraa.com

47

these agents must learn ontology concepts outside of Cbase and semantically interpret

differing vocabularies in their ontologies rather than attempt to share a common pre-

defined ontology.

Despite the fact that all agents can teach the other agents or learn from them, for

explaining our problem we consider one agent, AgL, as the one that wants to learn

a new concept and the other agents, Ag1,...,Agm, will be its teachers. AgL has an

ontology OL = (CL,≤C , RL, σL,≤RL
) and knows a set of features FL. Analogously,

Agi has as ontology Oi = (Ci,≤C , Ri, σi,≤Ri
) and knows a set of features Fi. For a

concept c known to the agent Agi, this agent has in its data areas a set pexc
i ⊆ U of

positive examples for c that is a subset of all objects in the world (i.e. U). Agi can

use pexc
i to teach c to AgL. Given this setting we assume a cgoal that the AgL does

not know and wants to learn from other agents.

In this thesis we propose a general method to enable the learner agent to learn

cgoal and integrate it in its own ontology. Our general method includes proposing a

general interaction scheme and different realizations of each step to achieve this goal.

Also we propose a general structure for our agents which covers the action set of the

agents as well as the structure of messages that the agents are communicating. The

result of this learning/teaching scheme is the description of cgoal in terms of AgL’s

feature set FL and an updated ontology Onew
L = (Cnew

L ,≤C , RL, σL,≤RL
). AgL will

also create a set pex
cgoal

L in case another agent wants AgL to teach it cgoal.

4.1.2 Notations

Because we use many notations, it is easy for a reader to confuse the symbols. Each

entry in the Table 4.1 describes a symbol explicitly. Note that some symbols will be

www.manaraa.com

48

Table 4.1: Description of notations
Notation Description

Agi represents a teacher agent among a group of n teacher agents Ag1...Agn

AgL represents the learner agent
Oi represents the ontology for Agi

U is the set of all objects in the world
F is the set of all features that agents can use to conceptualize the world
Fi is the unique set of features for agent Agi

Fbase is the set of base features that are known and can be recognized by all
agents

Cbase is the set of base concepts that are known all agents
cgoal is the goal concept that is being learned by the learner agent AgL

c represents a concept
o represents an object
pexc

i is the set of positive examples for concept c in agent Agi

nexc
i is the set of negative examples for concept c in agent Agi

pi is the set of positive examples Agi sends to the Learner agent AgL

ni is the set of negative examples Agi sends to the Learner agent AgL

ccore represent the core part of a non-unanimous concept
cperiphery represents the periphery part of a non-unanimous concept
cown represents the agent’s own definition boundary in a non-unanimous

concept
cnu represents a non-unanimous concept

introduced later in this chapter.

4.1.3 Key Assumptions

Our work makes several key assumptions that are much weaker than the assumptions

other works have made.

• Ontologies of agents are diverse. Agents may have different sets of concepts

and relations and also may arrange the concepts differently.

• Agents use different sets of features to conceptualize the world. Among these

www.manaraa.com

49

features there is a subset of some base features that can be recognized by all

agents.

• Agents know a set of some base concepts by name and their feature values for

the base features and the objects that are covered by them.

• Agents can send or receive example objects regarding the concept which is

being learned.

• Agents use example objects as part of their knowledge structure and can learn

from examples.

• The identity of example objects in the world are accessible to all the agents.

4.2 The General Interaction Scheme

Our basic idea is to have an agent which learns required concepts (or at least an

approximation) with the help of the other agents. Due to the potential differences in

the ontologies of agents and in the available features, objects that are positive and

negative examples for a concept will play the major role in teaching an agent a new

concept.

In this section, we present the general interaction scheme among agents that is

the core of our methodology to have an agent learn a particular concept. Then in

the following sections we will concentrate in more detail on the important steps of

this interaction scheme and discuss possible realizations for them.

Part of ActL are actions QueryConcept to query other agents regarding a concept,

AskClassify to ask other agents to classify an example concept, Learn to learn a

www.manaraa.com

50

concept from a set of positive and negative examples, and Integrate to integrate a

newly learned concept in its ontology.

Also part of the Actis are the actions FindConcept to search the ontology to

find the best matching concept with the query and make a candidate set of con-

cepts, SelectBestConcept to select the best matching concept out of the candi-

date set, SelectPosEx to select a set of positive examples regarding a queried con-

cept, CreateNegEx to create a set of negative example regarding a queried concept,

ReplyQuery to reply to a query, ClassifyEx to reply to a query about an example

and ReplyClass to send the result back to the learner. All of the actions both in

the learner and teachers come with appropriate arguments. These actions form our

interaction scheme in the following manner:

1. AgL determines it needs to know about a particular concept cgoal and performs

QueryConcept(“cgoal”) to inform the other agents about this need.

2. Each agent Agi reacts to AgL’s query by :

(a) performing FindConcept(“cgoal”), which leads to a set of candidate con-

cepts Ccand
i ,

(b) performing SelectBestConcept to select the “best” candidate ci out of

Ccand
i ,

(c) performing SelectPosEx to select a given number of elements out of pexci
i ,

thus creating pi,

(d) performing CreateNegEx(ci) to produce a given number of (good) negative

examples for ci, which we call the set ni,

www.manaraa.com

51

(e) performing ReplyQuery(path(ci),pi,ni).

3. AgL collects the answers (path(ci),pi,ni) from all agents and uses a learner to

learn cgoal from these combined examples (action Learn((p1,n1),...,(pm,nm))).

If there are conflicts, then it resolves them with the help of the other agents

using AskClassify (resp. ClassifyEx and ReplyClass by the other agents).

4. AgL uses the learned cgoal and the collected path(ci)s from the other agents to

construct an ontology path Cpath leading to cgoal within its ontology OL (action

Integrate(path(c1),...,path(cm))).

As stated before the result of this learning/teaching scheme is the description of

cgoal in terms of AgL’s feature set FL and an updated ontology Onew
L = (Cnew

L ,≤C

, RL, σL,≤RL
). Also AgL creates a set pex

cgoal

L in case another agent wants AgL to

teach it cgoal.

This general interaction scheme is the fundamental part for our methodology that

allows agents to learn new concepts out of Cbase. In fact, this chapter is dedicated

to give a detailed description of each step of this general interaction scheme. In

the following sections we highlight our preliminary realizations for each step. Then

we introduce different realizations for some steps to improve the quality of cgoal.

This improvement will be accomplished by changing the teachers’ positive example

selection mechanism to select more comprehensive positive examples and also by

changing the negative example creation mechanism to create more discriminative

negative examples. We will also propose a new definition for concepts which allows

the learner agent to communicate with other agents even if agents are not unanimous

about it.

www.manaraa.com

52

4.3 The Initial Query

In order to submit a query, AgL first needs to become aware that there is a concept

that it needs to learn. There are a couple of scenarios that can lead to this realization.

AgL might observe a conversation between other agents in which an unknown concept

identifier is used (or an identifier known by AgL, but in a way that does not make

sense). OrAgL might be dealing with a set of objects that share certain feature values

from FL and it wants to know if other agents know more about the similarities of

these objects.

Based on these scenarios, we require action QueryConcept to have 3 parameters

to be used to define cgoal to the other agents:

QueryConcept(identifier,{[f ′1 = V ′
1],...,[f

′
l = V ′

l]},Ogoal).

Here identifier is an element of Ci for some agent(s) Agi, {[f ′1 = V ′
1],...,[f

′
l = V ′

l]} is a

selection of features f ′j ∈ Fbase and their values V ′
j ⊆ Df ′

i
that AgL thinks are related

to the concept cgoal and Ogoal ⊆ U is a set of objects that AgL thinks are covered

by cgoal. Due to the different scenarios from above, each of the three parameters

can be empty, if AgL does not have any information on the parameter. Also, AgL

can decide to address only a subset of {Ag1,...,Agm} and then it can use as f ′is also

features that are known to this subset and itself. If AgL uses the identifier parameter,

then there is naturally a chance that different agents use this identifier for different

concepts. Again, AgL might therefore address only some of the agents. Note that if

the addressed agents associate different concepts with the identifier, then AgL will

end up with learning a subconcept of these concepts (if possible). We will present

the different parameters making the query in the context of our application example

www.manaraa.com

53

in Chapter 5 Section 5.1.2 and Section 5.1.3.

Due to our basic assumptions about what our agents do not have in common, a

teacher agent Agi without any additional knowledge about the ontology OL of AgL

is rather limited in what it can put into an answer to the query by AgL. In fact, we

are not even guaranteed that Agi can really grasp what AgL wants to know, since

AgL is already limited in its ways to express what concept cgoal it wants to know

about. But sets of objects are something that all of our agents can communicate to

each other, even if they might perceive these objects differently, and therefore we use

sets of objects in the answers that teachers are creating. The answer of Agi will also

include information about the concept ci it thinks AgL wants to know about and

how this concept is placed in Oi, so that AgL can use whatever information pieces

it can understand (see Section 4.7).

After receiving the query from AgL, an Agi first has to determine which of the

concepts in Ci fits the query the best (i.e. what is ci). Then it has to select positive

and negative examples for this concept and finally it sends this information to AgL.

4.4 Finding the Best Known Concept

The query from AgL consists of three parts that it uses to describe what concept

it wants to learn more about. Due to the differences between agents, each of these

parts can point to different concepts that an agent Agi knows of. In fact, if AgL

provides several objects in Ogoal, they might be classified by Agi into several of its

concepts. As a consequence, Agi has first to collect all the concepts that fulfill the

query into a candidate set Ccand
i and then it has to evaluate all these concepts to

www.manaraa.com

54

determine the concept that is, in its opinion, the best fit.

A concept is a candidate with respect to identifier, if its identifier is identical to

the identifier in the query. A concept c = {[f1” = V1”], ..., [fp” = Vp”]} is among the

candidates due to the feature part of the query, if for all fj” with fj” ∈ {f ′1, ..., f ′l}

let us assume that fj” = f ′a we have that Va” ⊆ Vj”. This means the value (i.e. Va”)

for any feature (i.e. f ′a) of the query should be a subset of values of at least one

feature in the concept (i.e. fj”). Finally, a concept is also a candidate, if it covers

one of the objects in Ogoal. Note that the last two conditions put all superconcepts

of a concept from the candidate set also in Ccand
i .

There are many different ways how an evaluation of the candidates can be per-

formed, especially if we allow for criteria coming from the application area the agents

are working in. Each of the three query parameters can contribute to a measure that

defines what is the “best”, but how these contributions are combined can be realized

differently. The identifier part does either produce a contribution or not. Every ob-

ject in Ogoal also is binary in its contribution. But this favors the more general (with

respect to ≤C) concepts, so that some additional criterion is needed that makes the

count of covered objects relative to the depth of the concept in the taxonomy tree.

Finally, the feature part of the query suggests a good fit of a concept if it agrees

with the feature values of many of the features used in the query. But this can also

be strengthened by looking at how good the fit for a particular feature is. We will

present an example measure for how a concept fits a query in Chapter 6. Note that

in theory different teacher agents could use different measures.

After the best concept ci for the query is determined, an agent Agi includes

into its answer information about the path that leads in its taxonomy to ci and the

www.manaraa.com

55

subtree below ci’s node (we refer to this information by path(ci)). In addition to this

information, Agi must select a set of positive examples and create a set of negative

examples to include into its answer package.

4.5 Selecting Positive and Negative Examples

In this section we present our proposed methods for selecting positive and creating

negative examples. Before giving the detailed description of our approach we should

discuss some issues regarding the examples and their distribution in the space of all

possible objects.

Figure 4.1 shows a pictorial interpretation of the distribution of example objects

for a symbolic concept cj in the space of all possible objects, i.e. U . In most cases

the number of negative examples is much greater than the positive examples and

that is because every concept other than cj could be a possible source concept for

the negative examples. The excessive number of objects which is covered by these

concepts makes the set of negative examples very large.

Figure 4.1 also indicates that the positive and negative examples are distributed

both inside the border of cj and outside. For instance, e1 represents a positive

example in the core of the concept and e2 represents another one in the border of

the concept. e1 is an instance of cj in the central part and can clearly represent

it, but e2 is closer to the negative examples and can help in clarifying the concept

border with other concepts. While both examples are inside the border of cj they

provide AgL with a different quality of advice. We believe that a good method

of positive example selection for a teacher agent should guarantee to include a fair

www.manaraa.com

56

 -

+ + + + + + +
+ + +
 + + +

 +
 + +

 + +
 +

- - -- -

- - -

-

-
-

-

-
2pe

-

- -

-
-

 - - - -
 - - - - -
 - - - - -
 - - -
 - -

 -

 - - - - - -
 - - - - - -

-
-
-

Negative Example Space

-
- - -
 -

 - - -
 - -

- - - - - - -

 - - - - - -
 - - -
 - - -

 - - -
- - -

 - - -
 - -
 - -
 - -

 - - - - - -
 - - - - - - - -
 - - - - -

-
-
-

1e

2e
+

jc

Figure 4.1: Flat representation of example space

distribution of examples both from the border and the core of the concept in the reply

package and, in fact, this makes the teacher’s answer more comprehensive. For the

set of negative examples we need examples that highlight the border of the concept.

As Figure 4.1 shows the set of negative examples is very large and this makes the

selection of examples a very tricky task. To select the negative examples we can

use some information that the agent’s ontology might offer us. This information

allows us to first concentrate on the concepts that are a possible source for negative

examples and then select among the examples that are covered by them.

In the following subsections we present our basic selection methods which are

simple and easy to implement. Later we present two rather complex methods that,

in fact improve the quality of selected examples and consequently improve the quality

of a learned concept for AgL.

4.5.1 Random Selection of Positive Examples

Since each agent Agi stores for each concept cj in Ci a set pex
cj

i of positive examples

i.e. a set of objects covered by cj, coming up with positive example objects for a

www.manaraa.com

57

concept known toAgi can be rather straightforward. While providing AgL with more

examples normally produces better results, in our case we have to take into account

that the more objects from pexci
i are selected, the more expensive the communication

becomes and the more effort AgL will have to spend on learning. On the other side,

less positive examples usually means a less precise result of the learning on the AgL

side. Therefore we suggest to have the number of examples communicated to AgL

by each agent as a parameter of the whole system. Then selecting the appropriate

number of elements for pi can be most easily realized by randomly sampling pexci
i .

4.5.2 Using the Taxonomy to Select Negative Examples

Selecting negative examples for a concept is not as easy as positive examples. There-

fore, the set of negative examples nexc for a concept c is defined as

nexc = U − {o|o covered by c}.

As already stated, this can be a very large set and usually different elements of

this set provide learners with a different quality of advice. Good negative examples

are examples that “nearly” are in the set covered by the concept, a kind of “near-

misses” that allow to highlight the borders of a concept. Because random selection

of negative examples does not guarantee the selection of these “good” examples we

need to develop a mechanism that includes such near-miss examples in the set of

negative examples.The fact that our agents have ontologies allows us to do a better

job in selecting negative examples than randomly selecting out of nexc
i (by Agi).

The key for this better selection is to make use of the taxonomy information Agi has

and the relations in Ri. The later naturally depends on what relations are available.

www.manaraa.com

58

Let us first look at the possibilities that the taxonomy offers and then in Sec-

tion 4.6.1 we will see how we can select even better negative examples using rela-

tions in Ri. Each superconcept of the concept ci that Agi sees as the best concept to

answer AgL’s query can be used to limit the set of negative examples nexci
i that Agi

should consider for its answer. As a superconcept of ci, these concepts share a lot of

feature values with ci, so that the elements in their set of positive examples that are

not covered by ci are good candidates for “near-misses”. In fact, sibling concepts of

ci or its superconcepts are an even better source for negative examples since all their

positive examples are not covered by ci. Figure 4.2 indicates these candidates for

the selection of negative examples with the help of taxonomy information. Because

siblings share many features, the taxonomy assures that the near siblings are good

concepts to select negative examples from. Therefore to select these concepts we use

examples from siblings of ci or its superconcepts or even super-superconcepts.

The above mentioned mechanism gives us some concepts that can provide Agi

with a sufficient number of negative examples in nexci
i . Nevertheless if the number

of negative examples exceeds the system setting of number of examples, then Agi

selects the appropriate number of elements for ni simply by randomly sampling nexci
i .

4.6 Improving the Quality of Advice

In this section we present two alternative realizations for positive and negative ex-

ample selection. Using these methods we try to improve the comprehensiveness of

examples to provide the learner with a better quality of advice. For positive examples

we emphasize on the comprehensiveness, therefore we use a new method that selects

www.manaraa.com

59

nex
Source for
Negative
Examples

pex

ic

Figure 4.2: Negative examples using the taxonomy

examples that cover the example space. For negative examples we use a relation that

we believe is common to many different ontologies to produce more discriminative

examples.

4.6.1 Negative Example Selection Using an is-similar-to Relation

Since all agents use the same relation ≤C , all agents can use the taxonomy infor-

mation to limit the pool of negative examples to choose from. While the taxonomy

assures that the near siblings are good concepts to select negative examples from, it

does not guarantee that the concepts in the other parts of the tree are not “near-

miss”. It is very likely that information provided by some other relations can help

in the negative example selection process. As an example, let us look at the us-

age of a relation is-similar-to that we mentioned earlier. The motivation for

is-similar-to is to allow to express the similarity between two concepts that are

far away from each other in the taxonomy tree, but that share a lot of feature val-

ues. This makes is-similar-to a perfect candidate for helping with the selection of

www.manaraa.com

60

ic

nex is-similar-to

Root

pex

Figure 4.3: Negative examples using the taxonomy and is-similar-to relation

negative examples. Figure 4.3 shows how we can use concepts that ci is similar to by

using their positive examples as candidates for nexci
i . After collecting all candidates

in nexci
i , we again select the given number of examples for ni as a random sample.

Note that an is-similar-to relation can be automatically computed for a given

ci and Fi by introducing a similarity measure simf
i on feature values for each feature

f ∈ Fi with domain D: simf
i : D×D → [0..1]. We can create out of this a similarity

measure simU
i for objects by, for example, summing up the similarities for each

feature. More formally, let o = ([f1 = v1], ..., [fn = vn]) and o′ = ([f1 = v′1], ..., [fn =

v′n]), then

simU
i =

∑n
j=1 sim

fj

i (vj, v
′
j)

where sim
fj

i (x, y) = 0, if fj 6= Fi.

Out of this, we can create is-similar-toi between two concepts c and c′, if

simU
i (o, o′) ≥ simthreshold for all o ∈ pexc

i and o′ ∈ pexo′
i , with simthreshold as

a given parameter. While it would be better to use all objects covered by c and c′,

this can be impossible or at least very expensive, therefore we suggest to use the

www.manaraa.com

61

examples that are already available.

4.6.2 Positive Example Selection by Discriminative Feature Selection

and Example Ranking

Random selection of the positive examples is the most straightforward way which,

while keeping the selection process simple, does not guarantee the comprehensiveness

of the set of selected positive examples, pi. That is because the random selection of

positive examples does not assure to cover the whole space of positive examples. In

this section we propose a different realization for positive example selection.

To improve the positive example selection method we looked at the problem from

a different point of view. The selection of positive examples is the point that the

teacher can exert its unique vision in the teaching of a specific concept, therefore,

the teacher agent should utilize some methods to reflect its viewpoint. It is a very

common process for human beings that teach to reflect a viewpoint by emphasiz-

ing on some features that reflect that viewpoint more. Getting the idea from this

general phenomenon, we used the features describing a concept as the points that

the teacher wants to express its viewpoint about. Apart from the features in the

concept definition in the ontology, there might be some other additional character-

izing features in the positive examples which the teacher agent can rely on, in the

teaching of the concept by selecting the positive examples using them. We believe

that these characterizing features are the features that are more discriminatory than

other features in the examples.

Fortunately, there is a very close relation between the technical problem of ran-

dom selection of positive examples and the teaching from different viewpoints. By

www.manaraa.com

62

selecting the subset of positive examples using more discriminative features, the

teacher agent not only exerts its unique point of view, but it has a criterion to

arrange the selected subset in a very comprehensive way.

To identify discriminative features and select examples based on them, we de-

veloped a different realization for SelectPosEx(ci). In the new realization we use

the differences of features between the given positive examples (pexck
i) and nega-

tive examples (nexck
i) to calculate the feature strength in discrimination between the

positive and negative examples. We also use feature strength to identify more dis-

criminative features which we call core features, and denote them by CF . Then we

use CF , to extract good positive examples from pexck
i that we call distinctive positive

examples, pi. Without loss of generality in the following subsections we use pex and

nex instead of pexck
i and nexck

i to keep our discussion simple.

Identifying Discriminative Features

We identify the discriminative features based on the notion called Relief which we

borrowed from [RiK03]. Using ReliefF which is a more robust algorithm from the

Relief family we developed an algorithm to identify the discriminative features. This

algorithm constructs a set of core features of pex which is denoted by CF , by ranking

the feature strengths among the features that are exhibited in pex and nex.

The key idea of this method, given in Algorithm 1, is to estimate the strength

of features according to how well their values distinguish between examples that are

near to each other on the two sides of the border. For that purpose, given a randomly

selected example ei (line 3), the algorithm searches for the k most similar neighbors

from pex which we call the nearest hits, i.e. H, and k most similar neighbors from

www.manaraa.com

63

Algorithm 1 Calculates the vector of W of estimations of the features strength

1. set all weights W [F] := 0.0
2. for i = 0 to m do
3. Randomly select an example ei

4. find k nearest hit examples to ei in pex : H = {H1, ..., Hk}
5. find k nearest miss examples to ei in nex : M = {M1, ...,Mk}
6. for all f in F do

7. W [f] = W [f]−
k∑

j=1

diff(f, ei, Hj)/(m · k) +
k∑

j=1

diff(f, ei, Mj)/(m · k)

8. end for
9. end for

10. φ = 1
|F |

|F |∑
i=1

W [fi]

11. for all f in F do
12. if f > φ and f ∈ pex then
13. append f to CF
14. end if
15. end for

nex which we call nearest misses, i.e. M (line 4). Then it updates the strength

estimation W [F] for the set of all features that have been seen in F , depending on

their values for ei, each element of H, and each element of M (lines 6 and 7). If ei

and an example in H are different in their values for the feature f then the feature

f separates examples in the same concept which is not desirable so we decrease the

strength estimation W [f]. On the other hand if ei and an example in M are different

in their values for the feature f then the feature f separates a positive example

from negative examples which is desirable and therefore the algorithm increases the

strength estimation W [f]. The k is a user definable parameter which increases the

robustness of the algorithm against the noisy data. The whole process is repeated for

m times, where m is also a user defined parameter. Function diff(f, ei, ej) calculates

the difference between the values of the feature f for two instances ei and ej. We

www.manaraa.com

64

define nominal features as:

diff(f, ei, ej) =

 0; value(f, ei) = value(f, ej)

1; otherwise

and numerical features as:

diff(f, ei, ej) =
|value(f, ei)− value(f, ej)|

max(f)−min(f)

The algorithm then determines φ as the average of W (F). The φ is a threshold

that allows us to select the features which have strength above the average. Because

the teacher is interested in the features in pex it filters the set of features and add

to the CF all features which have been seen in at least in one example in pex and

W (f) > φ.1

Extracting Distinctive Positive Examples

We have shown how to compute feature strengths and how to determine φ so as

to select a set of discriminative features for formulating the core features (CF) of

the positive examples. Another important issue is, given an example, what is the

criterion, in order to consider it a potential distinctive positive example?

The key idea behind this method, given in Algorithm 2, is to estimate the distance

of every positive example from its peers in the negative side and use this estimation

to assess the distribution of the examples in the whole space of positive examples. For

1We keep the basic assumptions of the original algorithm unchanged. These assumptions includes
division by (m.k) in line 7 and definition of φ in line 10.

www.manaraa.com

65

Algorithm 2 Selects the set p of comprehensive positive examples

1. set all distances D[pex] := 0.0
2. for all ei in pex do
3. find k nearest miss examples to ei in nex : M = {M1, ...,Mk}
4. for all f in CF do

5. D[ei] = D[ei] +
k∑

j=1

diff(f, ei, Mj)/k

6. end for
7. end for
8. p = ∅
9. while there is ei in pex do

10. take out of pex an example ei such that D[ei] is minimum
11. if dist(ei, ej) > θ for all ej ∈ p then
12. append ei to p
13. end if
14. end while
15. return p

that purpose and using a similarity function (see Section 4.6.1), for every example ei

(line 3), the algorithm searches for its k nearest neighbors from the nex, i.e. M(line

4). The algorithm then updates the distance estimationD[ei] for the set of all features

in CF depending on their values for ei and each example in M using the diff function

(lines 5, 6 and 7). Apparently the examples with lesser values for D[ei] are in the

border and as the value increases the example moves more away from the border

(i.e. into the “inside” of the concept). In order to select a more comprehensive set

of positive examples, the teacher agent selects the examples that are not very close

to each other assuming that the close examples do not add so much to the learner

knowledge and its accuracy. The dist function calculates the distance of the selected

example ej with a candidate example ei. If the value of distance is greater than θ for

all selected examples, then the teacher adds it to the set of selected positive example

www.manaraa.com

66

pi (line 12 and 13). The value for θ can be simply the average distance between

examples. This value can be adjusted based on the system parameter that defines

the number of the examples that can be communicated to the learner. In fact to

select more examples we should decrease the value for θ and to select less examples

we should increase it. Function diff(f, ei, ej) is defined similar to Algorithm 1 and

function dist is defined based on the diff function as follows:

dist(ei, ej) =

|CF|∑
k=1

diff(fk, ei, ej)

4.7 Learning and Integration of New Concepts

Learning a concept, in the form of feature values, from a set of positive and negative

examples is a problem that is very well researched in literature and there are many

algorithms and systems available for this task. With pexcgoal = ∪m
i=1pi and nexcgoal =

∪m
i=1ni, we have the necessary input for such a learning system, with one potential

problem: conflicts between the teacher agents. Due to the differences among agents

it is possible that concepts ci and cj that Agi and Agj identified do not have much

in common. Using a conflict resolution mechanism, AgL should create a kind of

compromise concept cgoal as result. After having created the final description of cgoal

in terms of FL, AgL should also use some techniques to integrate the single and

newly learned concept into its taxonomy.

In this section we first describe our conflict detection and resolution mechanisms.

Then we present our concept learners which act as target functions to map individ-

ual example objects to a particular concept. We also describe a simple integration

www.manaraa.com

67

algorithm in which we use some more of the information provided by the teacher

agents to pre-structure AgL’s ontology with concepts that AgL will most probably

have to learn if it communicates more intensely on the subject of cgoal.

4.7.1 Learning of a New Concept Using a Concept Learner

As stated before, in the setting of this thesis AgL can learn a concept from scratch.

This means the structure of an ontology in the agents is not static and we can not

define a multi-class learner to learn the whole ontology. That is because if AgL uses

one multi-class learner it should re-learn the whole ontology when it learns a new

concept. To avoid this we used a binary class learning formulation. This enables

us to have a binary class concept classifier for every concept that AgL has learned.

Note that even the teacher agents should have a set of binary class concept classifier

for every concept they know. They use these classifiers to classify objects that AgL

sends to them to resolve conflicts.

As we defined in Chapter 2 a symbolic concept is an abstract phenomenon that

is mapped to a set of example objects. We define a concept classifier as a binary

function Tcj
that maps an example object ei to a particular concept cj or not. More

formally we define Tcj
as the following:

Tcj
(ei) =

 1 if ei is an instance of cj

0 otherwise

Using pexcj and nexcj and a supervised inductive machine learning algorithm the

learner agent can learn an approximation target function Hcj
such that Hcj

≈ Tcj

for every concept cj respectively. Analogously using pexcgoal and nexcgoal , AgL learns

an approximation target function Hcgoal
.

www.manaraa.com

68

Throughout this thesis we use two standard learning methods as our concept

learners. Each method represents a different machine learning approach: generative

modelling using a naive Bayes [Mit97] learner and the Rocchio algorithm [Roc71].

A naive Bayes learner is a simple probabilistic learner based on the Bayes’ the-

orem with strong (i.e. naive) independence assumptions. A more descriptive term

for the underlying probability model would be the independent feature model. De-

pending on the precise nature of the probability model, naive Bayes learners can be

trained very efficiently in a supervised learning setting. In spite of their naive design

and apparently over-simplified assumptions, naive Bayes classifiers often work much

better in many complex real-world situations than might be expected [Mit97].

The basic idea of the Rocchio algorithm is to construct a prototype vector to

represent the examples for each concept and compare a subsequent example with it

to classify that example. Using positive and negative examples describing the same

concept and a summation formula, the Rocchio algorithm computes a prototype

vector as the centroid vector of the concept. To determine whether an example

belongs to a concept or not, the similarity between the example and the prototype

vector is measured using the cosine product. We will describe these learners in the

context of our experimental evaluation in Chapter 5 in more detail.

4.7.2 Conflict Resolution

Learning from a group of agents is a very conflict prone process compared to just

learning from one agent. It can easily happen that the best concepts ci and cj that

Agi and Agj identified are not the same. The worst case can be that an example

that Agi sent as being positive for cgoal is considered as a negative one by Agj. In

www.manaraa.com

69

most cases such a contradiction will stop the learner. But we can also have more

indirect conflicts where a learning algorithm simply cannot come up with a concept

description that covers all objects in pexcgoal while not including any objects in

nexcgoal . In order to solve these problems the learner agent must detect the conflicts

and resolve them.

As we stated in Section 4.7.1, using positive and negative examples and a machine

learning algorithm, for every concept cj, we approximate the concept classifier with a

target function Hcj
. This concept classifier is assumed to classify an example object

ei regarding cj. Needless to say, we expect that Hcgoal
classifies ei ∈ pexcgoal as a

positive and ei ∈ nexcgoal as a negative example. We consider these truly classified

examples as consistent examples. Due to the fact that Hcgoal
is trained by mostly

consistent examples, we consider the inconsistent examples as possible conflicts.

Therefore after the learning component of AgL has performed Learn and produced

Hcgoal
, AgL will test all elements of pexcgoal and nexcgoal for correct classification by

this new cgoal. We consider all the example objects that are not correctly classified,

as possible conflicts.

To resolve conflicts, we go back to the teacher agents and ask them to classify

each conflicting example according to the ci they used to produce their examples.

We then treat the answers as votes and include all positive examples for which a

majority of the teachers voted, while requiring the exclusion of all negative examples

for which a majority voted. This produces some kind of compromise concept that

might appeal to most of the teachers (although it might not be identical to any of

the cis).

Apparently, there are other conflict resolution methods. If the learner wants to

www.manaraa.com

70

be very strict and sure that what cgoal produces is a subset of each ci, it will only

accept positive and negative examples for which the vote was unanimous. On the

other side of the spectrum of possible methods is to accept every object as positive

example for which at least one teacher says this is a positive example (and to adjust

the negative examples accordingly). This might result in a very generic concept, but

there can be situations where this is what a user might want.

As discussed above, each possible conflict resolution method will come up with

some concept for the learner’s ontology according to our definition of a concept from

Chapter 2 Section 2.2. The fact that each of these outcome concepts makes sense

points to a general problem of the definition of concepts in ontologies, at least if we

think about our general goal, namely allowing an agent to communicate with other

agents without having the use of a common ontology. Therefore we will rethink our

concept definition to allow for the use of the information the learner has collected

with regard to the opinions of the teachers about objects in and outside of cgoal in

Section 4.8.

4.7.3 Pre-Structuring of the Learner’s Ontology

After having created the final description of cgoal in terms of FL, we could use the

standard techniques for ontologies to integrate a single new concept into the tax-

onomy (see [WPB03]). But since the goal of our whole method is to improve the

communication among agents, we can use some more of the information provided by

the teacher agents to pre-structure AgL’s ontology with concepts that AgL will most

probably have to learn if it communicates more intensely on the subject of cgoal.

The key information used in pre-structuring is the path information sent by the

www.manaraa.com

71

teacher agents in their answers to the query. Our pre-structuring uses these paths

to create shells for concepts that might be useful for future communications. These

shells can also be used to indicate to an agent concepts it might want to learn in

the future and potential queries for them. For the normal usage of the ontology, we

treat shells as non-existent.

Algorithm 3 Simple pre-structuring algorithm

1. Strip all concepts cj ∈ path(ci)
∧

cj /∈ Cbase of all features f /∈ Fbase

2. Merge similar concepts in path(ci)
3. Merge similar concepts in all path(ci) of different agents to shellpool
4. Make a set P of all alternative paths by cj ∈ shellpool using ≤C

5. Integrate the longest path of P in OL

Each path(ci) from an agent Agi contains the path in Oi leading to ci and the

taxonomy tree below ci in Oi using the features from Fi for characterization. Al-

gorithm 3 shows the simple pre-structuring algorithm that we used. We first strip

all concepts in path(ci) that are not in Cbase of all features that are not in Fbase.

This creates what we call a concept shell. We then merge shells that are similar in

their feature descriptions, both within one path(ci) and between paths from different

agents. Then we combine the shells from all the teachers into one path for OL (if

there are concept shells that are not comparable with respect to ≤C , then we select

the longest path from a concept in Cbase to cgoal that can be formed using the con-

cept shells available; for concept shells smaller than cgoal with respect to ≤C we just

create the subtree) and integrate this path into OL.

www.manaraa.com

72

4.8 Non-unanimous Concept Ontologies

One of the basic assumptions of our work is that different agents will often have at

least slightly different definitions for a concept, due to the reasons mentioned before.

This reflects well what we observe among human beings. If all communications only

involve two agents/persons, this fact would not produce a lot of problems, since an

agent could learn the definition of a concept of every other agent it communicates

with and use the appropriate definition in each communication (this might be ex-

pensive, but is possible within the known definitions and methods). But the moment

an agent has to communicate with two or more other agents at the same time, there

is a serious problem: what if these agents differ in their definitions of the concepts

the communication is about?

The solution used by human beings is to be aware of what (most) agents agree on

and to provide additional information to clarify aspects that parts of the audience

might misunderstand. Note that this does not mean that an agent is unclear about

its own definition of a concept. We believe that for the individual work of an agent

having a precise definition of a concept is important. The ability to be aware of

potential misunderstandings when communicating with other agents is the goal that

we are trying to achieve using non-unanimous concepts. Later in Section 4.8.2 we

will propose a method that realizes how to obtain this ability for an agent.

Below, we will first introduce an extension of the definition of a concept from

Chapter 2 Section 2.2 and subsequent extensions to the ontology definition that

allow us to represent the potential aspects of misunderstanding in communicating

about a concept. Then we will show how to create such extended concepts and

www.manaraa.com

73

 ownc

peripheryc

corec

Figure 4.4: A Non-unanimous Ontology Concept

ontologies in a very straightforward manner, if the group of teacher agents covers

well the possible differences in understanding a concept. Finally, we present a way

how to make use of such extended concepts in communications to a group of agents.

4.8.1 Non-unanimous Concepts

In order to allow to express the range of possible misunderstandings about a concept,

instead of representing a concept by one feature set, we use three such feature sets,

which means that we essentially use three concepts:

c = (ccore, cown, cperiphery).

These three “normal” concepts provide us with two boundaries and the agent’s own

definition of the particular concept (represented by cown).

Figure 4.4 gives a graphical representation of the trio of “old” concepts that we

use to represent a non-unanimous concept. The inner boundary ccore is intended to

provide the agent with a concept definition that represents all objects for which there

is no doubt among all agents that they belong into the concept, so ccore covers the

www.manaraa.com

74

core of the concept. The outer boundary cperiphery covers all objects that ever might

be considered to belong to the concept, which means that all objects not covered by

cperiphery for sure are not in the concept c. Hence, essentially cperiphery defines the

extend of the periphery of the concept.

Figure 4.4 also visualizes an obvious requirement for the three concepts that make

up a non-unanimous concept, namely that ccore ≤C cown ≤C cperiphery (remember that

≤C essentially is the subset relation). Note that there is no requirement that ccore,

cown and cperiphery are different from each other. In fact, if there is no possibility

for misunderstandings, as for example for a concept in Cbase, then we have ccore =

cown = cperiphery.

If we want to use non-unanimous concepts within ontologies, then most of what

we defined in Chapter 2 does not have to be changed. The only potential problem

is ≤C , since there is always the chance that the peripheries of two concepts might

overlap (given that the objects in cperiphery - ccore are somewhat questionable with

regard to really representing the concept and the objects in cperiphery - cown are not

covered by the concept in the point of view of the agent). If we have to provide the

equivalent of ≤C for non-unanimous concepts, then we will use the relation ≤Cnu ,

which we define as

(ccore1 , cown1 , cperiphery1) ≤Cnu (ccore2 , cown2 , cperiphery2),

iff for all o ∈ cperiphery1 we have o ∈ cperiphery2 .

Finally, we should mention that all the three concepts ccore, cown and cperiphery

of some cjnu naturally have a presentation as feature value sets according to our

preliminary definition. For a feature fi this means that we have now three value

sets, namely Vicore , Viown and Viperiphery
, with Vicore ⊆ Viown ⊆ Viperiphery

⊆ Di where

www.manaraa.com

75

Di is the set of possible values the feature can have. So, associated with potential

misunderstandings in communication will be certain feature values for some or all

the features that an agent uses in its ontology.

4.8.2 Learning Non-unanimous Concepts

Now that we have defined non-unanimous concepts and how they fit into the ontology

of an agent, the next question is how do we create such a non-unanimous concept

for an agent. Fortunately, the answer is very straightforward: by learning the non-

unanimous concept using our method from Section 4.2. Without non-unanimous

concepts, we have to choose one of the three conflict resolution methods that we

described in Section 4.7.2 and our suggested method was to use the concept that

could be learned from the positive and negative examples on which a majority of the

teachers agreed on. If we represent concepts by the sets of the objects covered by

them, then Figure 4.5 visualizes the three different possible outcomes of the concept

learning process for the three conflict resolution methods for three agents Ag1, Ag2

and Ag3 and the candidates c1, c2, and c3 that these agents selected.

If we assume that the set of teachers that AgL uses to learn a concept represents

well the different understandings that a group of agents has about a concept, then

the three different conflict resolution strategies seem to be a perfect way to learn the

3 concepts ccoregoal
, cowngoal

, and cperipherygoal
that we need to define a non-unanimous

concept. We use what the learner produces out of the examples all the teachers

agree on as ccoregoal
and the result of the concept learning when using everything as

positive example that is suggested by at least one teacher as a positive example is

cperipherygoal
.

www.manaraa.com

76

Union area

Intersection area

)(11 Agc

)(22 Agc

)(33 Agc

Majority area

Figure 4.5: Visualization of Conflict Resolution

In defining cowngoal
we essentially can use any concept that lies between ccoregoal

and cperipherygoal
(including using one of these concepts). Since cowngoal

is intended to

express the agent’s personal belief in what the concept really is, we still think that

using some kind of compromise concept between the two extremes is a good idea and

using the result of what a majority of the teachers agrees on is a good compromise.

Given the usage of non-unanimous concepts that we target, it makes sense to create

a set of positive examples for each of the 3 concepts ccoregoal
, cowngoal

, and cperipherygoal
.

We will call these example sets pexccoregoal , pexcowngoal , and pexcperipherygoal .

4.8.3 Using Non-unanimous Concepts in Group Communications

Before we present our general method for using non-unanimous concepts in com-

municating with groups of agents, let us look at an example that demonstrates the

problem we are solving. This example stems from introductory Math classes and

essentially represents the question: Is zero a natural number? The concept of nat-

www.manaraa.com

77

ural numbers is introduced in nearly every elementary Math course and while there

is absolutely no disagreement between mathematicians with regard to 1, 2, 3 and so

on being natural numbers (and -1, -2, -3 and so on not being natural numbers), we

often are told that 0 is a natural number in introductory courses of set theory, while

introductory courses in number theory usually are not seeing 0 as a natural number.

Using non-unanimous concepts, we can model this fact by having ccore as the set of

number objects 1, 2, 3 and so on and cperiphery as the set of number objects 0, 1, 2,

3 and so on.

An agent Ag (which could be a computer science student) that has to learn

about natural numbers will make its own decision about zero. But regardless of this

decision, what if this agent has to communicate with a large group of mathematicians

(including both number and set theoreticians) about something related to natural

numbers? If Ag has decided to favor the view of 0 being a natural number (i.e. cown

= cperiphery), then by using the concept identifier “natural number” and explicitly

stating that whatever he says holds true for 0 (which is the sole element of pexcown -

pexccore) Ag can be sure that his communication is understood by everyone (although

some might see some redundancy in this communication). On the other side, if Ag

decided to have cown = ccore and wants to express that something does not hold for

all natural numbers, then it should again use the concept identifier “natural number”

in its communication and explicitly state that this something also does not hold for

0 (since now 0 is the sole element of pexcperiphery - pexcown).

More precisely, assuming that after learning a concept, learner and the teachers

establish a common concept identifier, using non-unanimous concepts to commu-

nicate with groups is based on enhancing the usage of the concept identifier with

www.manaraa.com

78

additional objects to convey to the listeners the agent’s understanding of the con-

cept. If we communicate positively about a concept, these additional objects are

taken from pexcown - pexccore (and from pexcperiphery - pexcown if we want to refer to

the universe without the concept). Note that the obvious solution of simply referring

to all objects that are in cown but not ccore by features and their values is not open

to us, since we assume that different agents have different sets of features.

While it is possible to simply use the whole set pexcown - pexccore in the commu-

nication, we have to assume that this might be a large set (in fact, there might be

infinitely many objects in cown that are not in ccore and using the stored positive ex-

amples is already just an approximation). Communicating all these examples might

be too costly for the agent and therefore we assume that the first step of this agent

is to determine a maximal number exmax of objects that it is willing to use in the

communication. exmax might be a constant parameter or it could be adjusted based

on the success of earlier communications with a group of agents.

In order to select the exmax examples, we naturally want these examples to cover

the difference between cown and ccore as best as possible. Again, there are different

methods how this can be achieved. A simple, but in our opinion good enough,

method is the following:

Let FC = ∪n
i=1{(fi, vi)|vi ∈ Viown − Vicore}.

For each element o in pexcown - pexccore compute:

cover(o) = |{(f ,v) ∈ FC|v is a value of feature f for o}|

and select one of the elements, let’s say o′, with the highest cover value. Then

remove all the (feature, feature value) pairs of o′ from FC and repeat this selection

www.manaraa.com

79

exmax− 1 times.

www.manaraa.com

Chapter 5

An Example Application

In this chapter we describe how we implemented an instantiation of our concepts in

the form of a multi-agent system. We used this system as a prototype to investigate

our novel approach to concept learning among agents with diverse ontologies.

5.1 Problem Domain

To evaluate our concepts from Chapter 4, we have chosen the course catalog ontology

domain (see [UIl]) which is a very popular domain in ontology research. The set of

objects U consists of files describing the courses offered by Cornell University, the

University of Washington and the University of Michigan. The domain is addition-

ally structured according to the university units of these universities, which creates

different ontologies for each of them. As stated before, our teacher agents will be

agents that each represents one of these three universities in the following called

AgC , AgW , AgM . The course files (and unit structure) for Cornell and Washing-

ton were taken from[UIl], the ones for Michigan from their web site at [UMi]. The

three universities together offer 19061 courses and each university’s ontology has at

least 166 concepts on top of their courses. Table 5.1 shows the characteristics of our

domain that are of interest [MDHD02].

80

www.manaraa.com

81

Table 5.1: Domain characteristics

Ontologies Cornell Michigan Washington
of concepts 176 174 166
of non-leaf concepts 27 21 25
depth 4 4 4
of objects in ontology 4360 7744 6957
max # of objects at a leaf 161 293 214

5.1.1 Concepts in Domain

As stated before, ontology of each agent is formed according to the university units

that it is representing. Clearly the most general concept is the university itself

that has all other units as its subconcepts. On the other hand the more specific

concepts are programs that each department offers or in case of not having any

official program, a department itself can be a specific concept.

As Figure 5.1 shows Biological Anthropology is a program in department of

Anthropology which makes it a more specific concept. Department of Anthropology

and higher units are more general concepts. By Learning of Biological Anthropol-

ogy concept the learner agent provides someone in the University of Michigan with

suggestions for how this concept should be characterized.

5.1.2 Objects in Domain

As stated in Chapter 4, associated with each concept there is set of positive ex-

amples representing it. These sets of objects in our domain are consisting of files

describing courses offered in each program. A course file contains a course identifier,

a course description and the prerequisites of a course. What we really need is the

www.manaraa.com

82

Figure 5.1: Specific concept VS more general concepts in AgM

course description part which based on it we form our features. Figure 5.2 shows

two example objects for Biological Anthropology concept. Red, blue and black

colors are showing the course identifier, course prerequisite and course description

respectively.

One important assumption in this thesis is that the example objects in the world

are must be accessible to all the agents. That is because the teacher agents are teach-

ing concepts using objects. We defined a uniform way of locating example objects in

our proof of concept application. Based on our Uniform Object Locator (i.e. UOL)

scheme each agent points to the objects using a combination of IP address and the

uniform path of the course description file.

www.manaraa.com

83

ANTHRBIO_450_ Molecular_Anthropology.

At least one anthropology or biology course. (3).
(Excl). (BS). May not be repeated for credit.

The course encompasses the theory and methodology of
molecular genetic data collection, as well as the
analysis of molecular genetic data. Molecular genetic
data is used to illustrate the basic principals of
population genetics and molecular evolution. Class
projects involve analyses of molecular data.

ANTHRBIO_562_Human_Nature.

Consent of instructor required (Prerequisites
enforced at registration). ANTHRBIO 467. (2). (Excl).
(BS).

An advanced seminar in evolutionary psychology.
Topics covered include: sexual selection, mating
systems theory, parental investment, reciprocity,
morality, and religion.

Figure 5.2: Two example objects representing Biological Anthropology concept

For instance, UOLs for the example objects in Figure 5.2 are:

192.168.213.1/michigan/Literature Science and Arts/Anthropology/Biological Anthropology/ANTHRBIO 450

Molecular Anthropology

192.168.213.1/michigan/Literature Science and Arts/Anthropology/Biological Anthropology/ANTHRBIO 562

Human Nature

The teacher agents use these UOLs to point to the objects that they like to teach a

concept with. The learner agent also use these UOLs to locate the objects and learn

from them or resolve any possible conflicts. Additionally these UOLs can be used

to query the teacher agents when the learner agent asks about a concept using its

representing objects.

www.manaraa.com

84

5.1.3 Feature Preparation for Example Representation

To represent the courses in terms of features, we had a little bit of preparation to do,

borrowing ideas from the field of information retrieval. Features describing a course

are its identifier fidnt which is a string, and its prerequisites fprereq which is a set of

course identifiers. Different universities use different systems to create identifiers, so

that these features are not really of any help for our purpose. The third feature that

we are interested in, is fdescr which is a simple text-based course description. The

course description usually determines by which organizational units a course should

be taught and a simple definition of the course. Textual information in this feature

uniquely represent a course and give us the ability to conduct a successful learning

process.

Defining concepts based on objects that consist of natural language texts is not

easy, but an area of quite a lot of interests and practical applications. One way of

representing text documents in information retrieval and text classification is the

bag-of-words technique in which text documents are parsed into a single-word terms

vector(i.e. keywords) with the term frequencies in each component. Unfortunately

this scheme is not general enough to meet our needs in representing our example

objects. That is because the bag-of-words technique represents documents in the

form of single-word terms vectors and it is not guaranteed that these keywords will be

present in every example objects. This means that we may not be able to represent

a set of examples for a concept using a set of relevant features. As we defined

in Chapter 2 Section 2.2, we refer to a concept as a set of objects with a set of

common features and the same value or set of values for those features. Therefore

www.manaraa.com

85

if we consider each term as a feature then its appearance in one example object and

absence in another one may make it impossible to represent the set of examples using

a consistent set of features as we defined in Chapter 2. In fact we need a mechanism

in which the example objects are represented with a set of features that have the

appropriate values to uniquely identify a concept.

One other way of defining features for such texts is to group them to look for

particular words in the texts or word combinations [Sah96], [PS03]. Using this

method we combine some keywords (i.e. terms) to make a new feature. For example,

feature fpicture,photo,figure: text → Boolean is a feature which is made by combining

picture, photo and figure and it is true for a text t, if either one of the keywords

occurs in t. This word combination helps us to overcome the above mentioned

problem and allows us to come up with a fixed set of features that represents every

objects of a particular concept for each agent.

We base our features for the course descriptions on what we call a set K of key

words. Then we have a feature for each possible subset of K (excluding the empty set)

as described above. Different key sets create different feature sets. A very important

question here is how we can form a set K of key words knowing that the bag of words

for objects representing a concept usually is very large. A major characteristic, or

difficulty in the systems that use textual documents is the high dimensionality of the

key word space. This unique set of key words that occurs in documents (i.e. objects)

can be tens or hundreds of thousands of terms for even a moderate-sized object

collection. While random selection of words is a simple solution it is not intelligent.

Therefore for every particular concept learning process and in a pre-processing phase

in every teacher agent, we use some techniques from the information retrieval domain

www.manaraa.com

86

computer 26.0
system 19.0
design 18.0
science 14.0
performance 13.0
model 12.0
theory 12.0
parallel 12.0
algorithm 9.0
technology 9.0
language 9.0
logic 9.0
analysis 8.0
program 8.0
structure 6.0
synthesis 6.0
knowledge 6.0
development 6.0
process 5.0
formal 6.0
project 5.0
information 5.0
digital 5.0
software 5.0
control 5.0
complexity 5.0
circuit 5.0
data 4.0

latin 111.381
greek 72.726
roman 36.194
literature 25.484
classic 20.557
modern 16.049
epic 15.437
attic 11.454
drama 11.339
ancient 10.341
antique 10.341
painting 9.774
culture 8.803
sculpture 8.028
medieval 7.917
religion 7.809
odyssey 7.768
orator 7.406
prose 7.379
tragedy 7.325
horace 7.100
pagan 6.528
aristotelian 6.448
democritus 6.448
aesthetics 6.357
cicero 6.357
herodotus 5.671
tradition 5.597

a) Computer Science b) Greek

Figure 5.3: Keywords for Computer Science and Greek using DF and X 2 statistics

to reduce the key words dimensionality. Our automatic key word selection methods

include the removal of non-informative words according to a set of objects statistics,

and the construction of new features which combine lower level key words into higher

level orthogonal dimensions. We utilized two different key word selection methods:

Document Frequency (DF) and X 2 statistics (see [YP97]) to select key words that

are basically creating the feature sets for our agents regarding every concept which is

being learned. Figure 5.3 part a) shows the output of our key word selection module

www.manaraa.com

87

for the concept Computer Science using the DF method while part b) shows some

key words as a part of the output for the concept Greek using X 2 statistics, both

for AgM . The numbers show the appropriate priority number that different methods

produce for each key word.

To make our description complete, let us assume that the key words in Figure 5.3

part a) are the set K for one agent. Then among features representing example

objects for Computer Science we have:

fdesign,computer,system, flogic,circuit, fdata,model,theory

fknowledge,control, fprogram,process,formal, flanguage,parallel,project

These features are utilized to represent every example for Computer Science and

in case of appearance of only one key word of each feature in one example its value

is true and in case of absence of all key words of the feature, the value of the feature

is false.

As mentioned above, we use some statistical methods to automatically produce

the set K of keywords for the teacher agents. This is possible because for any

concepts, there are many associated objects that the teacher agents can use as the

input for our statistical analysis. Nevertheless this is not possible for the learner

agent. That is because AgL does not have any associated objects for a concept which

has not been learned yet. It should be noted that the set of features describing the

world for an agent is completely subjective. In fact an agent either can be equipped

with some sensors that defines the origins of the features it uses to conceptualize the

world or can be directly supplied by the set features from the user and based on the

environment it is deployed. In our context and in order to supply AgL with the set

www.manaraa.com

88

K of keywords we used the key word sets of the teacher agents to make a unique but

overlapping key word set for the learner. We have chosen a selection of key words

from the teacher agents to enable AgL to have a reasonable overlap with the teachers

regarding the features. Then we added some unique key words that were related to

the concept that was being learned to define a unique feature set for the learner.

5.2 Ontology Construction

In our system, an ontology is a hierarchical structure that in conjunction with the

set of examples and the concept learner helps agents to conceptualize the world. To

enable our agents to work with ontologies we had some preparations to do. First

we had to construct the ontology and express it in a standard ontology language.

Then we had to develop an application programming interface to use it. There are

various different ontology languages available for representing ontology information

on the Semantic Web. The most expressive one of these languages is OWL [owl],

which has different flavors for different complexities. To have the OWL format of our

ontology we had a long way to go. First the information of universities which were

the taxonomies of units in an unstructured form has been created in simple textual

form. In the second step we used Protege [pro] to make our ontologies. Protege is a

platform that provides a suite of tools to construct domain models and knowledge-

based applications with ontologies. At its core, Protege implements a rich set of

knowledge modeling structures and actions that support the creation, visualization,

and manipulation of ontologies in various representation formats. Fortunately Pro-

tege ontologies can be exported into a variety of formats including OWL which was

www.manaraa.com

89

Figure 5.4: A snapshot from Protege showing a part of ontology for AgW

our target format. Figure 5.4 shows a snapshot from Protege showing a part of the

ontology for the University of Washington. Figure 5.5 shows a part of the ontology

of the University of Washington in OWL format for the graphical representation of

Figure 5.4. As stated in Chapter 4 Section 4.6.1 we use information that is provided

by some specific relations to improve the quality of our negative examples. We used

is-similar-to to show how this relation improves the good coverage of negative

examples. To show this relation in our ontologies we used a computation-intensive

www.manaraa.com

90

file:///c:/Documents%20and%20Settings/afsharch/My%20Documents/th...

14 of 14 10/1/2006 12:57 PM

+ <owl:Class rdf:ID="Geological_Sciences_GEOL"></owl:Class>
+ <owl:Class rdf:about="#Reserve_Officers_Training_Corps_Programs"></owl:Class>
- <owl:Class rdf:ID="Metallurgical_Engineering_MET_E">

<rdfs:subClassOf rdf:resource="#Materials_Science_and_Engineering"/>
</owl:Class>

- <owl:Class rdf:ID="Computer_Science_and_Engineering_CSE">
<rdfs:subClassOf rdf:resource="#College_of_Engineering"/>

</owl:Class>
- <owl:Class rdf:ID="Art_ART">

<rdfs:subClassOf rdf:resource="#College_of_Arts_and_Sciences"/>
</owl:Class>

- <owl:FunctionalProperty rdf:ID="is_similar_to">
<rdfs:domain rdf:resource="#Mathematics_MATH"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
<protege:allowedParent rdf:resource="#Statistics_STAT"/>
<rdfs:range rdf:resource="http://www.w3.org/2002/07/owl#Class"/>

</owl:FunctionalProperty>
</rdf:RDF>

- <!--
 Created with Protege (with OWL Plugin 1.3, Build 225.4) http://protege.stanford.edu

--> Figure 5.5: OWL format for ontology

method to find out the level of similarity between two concept. Using the similarity

function of Section 4.6.1 and for every agent, we first compared every concept in the

ontology with each other. Then we ranked the results for each concept and selected

top five concepts as the similar concepts. Then using the graphical user interface of

Protege we setup the similar concepts to each concept. Finally after constructing

ontologies we exported the ontologies to OWL format which has been utilized by the

ontology handler component of our agents.

To use ontologies the agents should be able to navigate through the ontology to

find concepts according to queries and add new concepts or integrate new paths to

it. We used Jena [jen] to satisfy these requirements. The Jena ontology API aims to

provide a consistent programming interface to the ontology application developers,

independent of which ontology language is being utilized. Although Jena satisfies

many of our requirements on navigating of ontologies it does not address our re-

quirements when it comes to search. We need a search mechanism that navigates

www.manaraa.com

91

all over the concepts in the ontology to find a specific concept based on its features.

In order to achieve this capability we extended Jena to support our specific needs of

searching.

5.3 Concept Learners

As we stated before throughout this thesis we use two standard learning methods

as our concept learners: naive Bayes [Mit97] and Rocchio [SB91]. In this section we

describe how we adopted these two algorithms for our instantiation.

5.4 Naive Bayes Concept Learner

In this section we present the naive Bayes learner in the context of our experimental

domain. We based our naive Bayes learner on [Mit97] and modified it to achieve our

specific requirements. We first modified the algorithm to learn according to the spe-

cific key word set of the learner agent (i.e. KAgL
). That means the algorithm ignores

the key words that are not present in the KAgL
. Second we changed the definition

of features from just a key word to a combination of key words and consequently

we changed the method of calculation of class conditional probabilities. Finally we

modified the algorithm to learn two classes: fitcgoal
to show how an example object

belongs to cgoal and ¬fitcgoal
otherwise.

The modified version of the naive Bayes algorithm that we present in Algorithm 4

applies to the following general setting. Consider an example space X consisting of

all possible examples describing a concept cgoal, so we have X = pex∪ nex.1 We are

1To keep our presentation simple we denote pexcgoal and nexcgoal by pex and nex respectively.

www.manaraa.com

92

given training examples of some unknown target function Tcgoal
, which can take one

value from two possible values. The task is to learn a target function Hcgoal
from

these training examples to classify subsequent example objects and Hcj
≈ Tcj

. For

illustration, we will consider the target function classifying course descriptors which

are in form of small documents(i.e. strings) as interesting (i.e. instance of concept)

or uninteresting (i.e. not instance of concept) to the learner agent, using the target

values fitcgoal
and ¬fitcgoal

to indicate these two classes.

Algorithm 4 Modified naive Bayes algorithms for learning cgoal

1. T ← A vector of collection of all key words that occur in X = pex∪nex and are
in KAgL

2. P (fitcgoal
)← |pex|

|X|
3. Sp ← a single vector created by key words occurring in pex that are in KAgL

4. np ← total number of distinct key words in Sp

5. for all fk that are of interest to AgL do
6. nk ← sum of the number of times each key word in fk occurs in Sp

7. P (fk|fitcgoal
) = nk+1

np+|T |
8. end for
9. P (¬fitcgoal

)← |nex|
|X|

10. Sn ← a single vector created by key words occurring in nex that are in KAgL

11. nn ← total number of distinct key words in Sn

12. for all fk that are of interest to AgL do
13. nk ← sum of the number of times each key word in fk occurs in Sn

14. P (fk|¬fitcgoal
) = nk+1

nn+|T |
15. end for

To calculate the class for a subsequent example object, we require estimates for

the probability terms P (fitcgoal
) and P (fk|fitcgoal

). The first of these can easily

be estimated based on the fraction of each class in the training examples (line 2).

Because we setup the teacher agents to send an equal number of positive and negative

examples these prior probabilities are 0.5. As usual, estimating the class conditional

probabilities is more problematic because we must estimate one such probability

www.manaraa.com

93

term for each feature fk that we have used to represent our examples.

Fortunately, we can make a reasonable assumption that reduces the number of

probabilities that must be estimated. In particular, we shall assume the probability

of encountering a specific feature fk is independent of another feature fj (although

there might be some dependency because of the same key words occurring in several

features, to keep the basic assumption of naive Bayes unchanged, we consider them

independent). To complete our learning algorithm, we must still choose a method for

estimating the probability terms. We change the method from [Mit97] to compute

P (fk|cgoal) as follows:

P (fk|fitcgoal
) =

nk + 1

np + |T |

Where nk is the sum of the number of times each key word in fk occurs in Sp and

np is the total number of distinct key words in Sp. We repeat the same process with

appropriate sets to calculate P (¬fitcgoal
) and P (fk|¬fitcgoal

). Further details can be

found in [Mit97].

We use Algorithm 5 to classify subsequent example objects based on our learning

from Algorithm 4. HNB indicates if e is an instance of cgoal.

To illustrate the algorithm let us assume that the learner agent uses the fea-

tures in Table 5.2 to represent the concept Computer Science as our cgoal. As we

stated before because we use the same number of positive and negative examples,

the probability values for P (fitcgoal
) and P (¬fitcgoal

) are equally 0.5.

Now let us assume that AgL wants to classify an example that has {power,

program, logic} present in it. These key words enable features 2, 3, and 5. Based

www.manaraa.com

94

Algorithm 5 Modified naive Bayes algorithms for classifying an example ei

1. E ← collect all features based on key words that occur in e and are in KAgL

2.
a = [P (fitcgoal

)
∏

fk∈E

P (fk|fitcgoal
)]

3.
b = [P (¬fitcgoal

)
∏

fk∈E

P (fk|¬fitcgoal
)]

4.

HNB(e) =

{
fitcgoal

if a > b
¬fitcgoal

othewise

on our algorithm we compute the following probabilities based on the features that

have been enabled.

a = 0.5× 0.21× 0.33× 0.28 = 0.0097

b = 0.5× 0.28× 0.26× 0.37 = 0.0134

The result indicates that the example does not belong to the concept Computer

Science.

5.5 Rocchio Concept Learner

This concept learner is based on the relevance feedback algorithm originally pro-

posed by Rocchio [Roc71] and adapted for the vector space retrieval model [SB91].

Similar to naive Bayes we need to make some changes to adapt the standard Roc-

chio algorithm to work with our definition of features. Like other text categorization

algorithms, Rocchio considers one key word as a feature and uses the TF/IDF (i.e.

term frequency/inverse document frequency) key word weighting method to come

up with a value for that feature. This weighting method is a statistical measure used

www.manaraa.com

95

Table 5.2: Example features and their probabilities

features P (fk|fitcgoal
) P (fk|¬fitcgoal

)
1 fdesign,computer,system 0.42 0.31
2 flogic,circuit 0.28 0.37
3 fprogram,process,formal 0.33 0.26
4 fdata,model,theory 0.47 0.39
5 fpower,control 0.21 0.28

to evaluate how important a key word is to an example object (i.e. a document in

the information retrieval domain) in a collection or positive and negative examples.

The importance increases proportionally to the number of times a key word appears

in the document but is offset by the frequency of the word in the collection. The

term frequency in the given example is simply the number of times a given key word

appears in that example. In our context, the term frequency is the number of times

that each key word appears in fdescr. The inverse document frequency is a measure

of the general importance of the key word. It is the logarithm of the number of

all examples divided by the number of examples containing the key word. For our

modified version of Rocchio we first computed the TF/IDF for each key word that

was in KAgL
. Then to come up with the weight for the feature fk we simply sum

up the TF/IDF values for each key word which was presented in the fk. To see how

concept learner works, let us assume each example as a vector −→ei which is created

by all features fk. Then learning is achieved by combining example vectors in to a

prototype vector −−−→wcgoal
. First, both the example vectors of the positive examples as

well as those of the negative examples are summed up as follows:

www.manaraa.com

96

−−−→wcgoal
=

1

|pex|
∑
−→ei∈pex

−→ei − β
1

|nex|
∑

−→ei∈nex

−→ei

Rocchio requires that negative elements of the vector −−−→wcgoal
are set to 0. β is a

parameter that adjusts the relative impact of positive and negative training exam-

ples. The optimal values are likely to be task-dependent and the performance of the

resulting classifies strongly depends on a good choice of β.

To classify a new example −→e , we compute the cosine between −−−→wcgoal
and −→e .

Using an appropriate threshold θ on the cosine leads to a binary classification rule

which in fact is our interest.

HRocchio(
−→e) =

 fitcgoal
if cos(−−−→wcgoal

,−→e) > θ

¬fitcgoal
otherwise

The Rocchio algorithm does not provide a means to compute a good threshold.

One solution is to obtain a threshold via hold-out testing [SB91].

5.6 Agent Architecture

Figure 5.6 shows the components that are essential to instantiate our concepts. It

should be noted that the general architecture of an agent capable of teaching and

learning new concepts should have some other components. For instance agents use

planners to plan their activities or preceptors to sense their environment. To keep

our discussion focused we concentrate on the components that are of interest for

our instantiation. Some of the essential components that we describe in this section

www.manaraa.com

97

can be embedded in the general architecture of an agent to enable it to teach/learn

concepts. Some others define some functionalities that can be added to some pre-

existed component of an agent. For example agents must have a decision making

component and the functionalities of our decision maker can be added to the decision

making component of such a general architecture.

As stated before we want all agents to be able to learn and teach concepts.

Therefore we designed our agents to play the role of a learner as well as a teacher

by encapsulating the agents’ behavior into seven different packages. These packages

implement different actions that form the Act set of our agents. In this section we

first describe these actions then throughout the description of the responsibilities of

each components and their interactions we present the instantiation of Sit and Dat

in the context of our implementation.

5.6.1 Actions for Agents

As discussed in Chapter 2 Section 2.1, Act is the set of possible actions that an agent

can perform. Agents in this work, by performing an action or a sequence of actions

may modify their understanding of the world or provide other agents with different

types of helps. Also agents can act as a learner as well as a teacher depending on the

different situation they are in. Therefore the actions we describe here are common

to all agents. It should be mentioned that here we only discuss the actions that are

essential to instantiate our concepts.

www.manaraa.com

98

Ontology
Handler

Example
Selector

Indexing
Engine

Ontology Learner

Communication Engine

Query
Handler

Conflict
Resolver

Communication Channel

Decision
Maker

Objects

Ontology

Figure 5.6: The essential components for the agent teaching/learning concepts

QueryConcept(identifier,{[f ′1 = V ′
1],...,[f

′
l = V ′

l]},Ogoal)

The learner agent uses this action to query other agents about the concept that it

is intended to learn. The learner agent could query teachers by the identifier of the

goal concept, some features and their values which AgL thinks are related to the

goal concept or some example objects that again AgL thinks are covered by the goal

concept.

www.manaraa.com

99

FindConcept(cgoal)

The teacher agents use this action to find a set of candidate concepts that are satisfied

by the query elements. The only parameter for this action is cgoal which is the uniform

representation of the parameters of the query.

SelectBestConcept(ccand)

The teacher agents use this action to select the best concept from the set of candidate

concepts that action FindConcept has made.

SelectPosEx(cj)

The teacher agents use this action to randomly select a given number of positive

examples for cj. Each teacher agent Agi stores a set of positive examples for each

concepts cj in its ontology. Due to the communication cost Agi does send only a

selected set of positive examples to the learner agent.

As a different realization, instead of selecting the positive example objects in a

random manner for cj, this action allows Agi to select more distinctive examples

based on the discriminative features that it considers for cj.

CreateNegEx(cj)

The teacher agents perform this action to produce a given number of negative ex-

amples for the concept cj. This action uses taxonomical structure of the ontology to

select negative examples from the sibling concepts of cj.

AS an alternative realization the teacher agents utilize information provided by a

specific relation(i.e. is-similar-to) to create more informative negative examples.

www.manaraa.com

100

ReplyQuery(path(cj), pi, ni)

The teacher agents use this action to send the answer package back to AgL. The

answer contains the sets of selected positive and negative examples, pi, ni respectively

and the information on the path that leads in its taxonomy to cj and the subtree

below cj’s tree (i.e. path(cj)).

Learn((p1,n1),...,(pm,nm)))

The Learner agent uses this action to learn cgoal. This action collects the sets of

positive and negative examples and learns the concept in the feature-value form.

AskClassify(oj)

In case of any conflicting examples oj, using this action AgL asks the teacher agents

to classify the oj regarding the cgoal and vote for, or against it.

ClassifyEx(oj)

The teacher agents use this action to classify the requested example object, oj re-

garding the concept that is being learned.

ReplyClass(answer)

The teacher agents use this action to reply the result of the classification of the

requested example object to the learner.

Integrate(path(c1),...,path(cm))

This action is utilized by the learner agent to integrate the proposed paths(i.e. sub-

trees) in its ontology. This action first merges the paths path(c1),...,path(cm) to one

subtree and then integrates it in the agents ontology to come up with a new ontology.

www.manaraa.com

101

5.6.2 Components and their Responsibilities

To interact with each other, agents use a communication engine. The communication

engine enables agents to send messages directly to any other agent using TCP sockets.

To avoid the complexity of designing a specific directory agent, agents are required

to keep track of the current IP address of other agents. We assume that the agents

keep a record of IP addresses of other agents using a setup file during the agent’s

initialization process. Agents use XML based messages to communicate. For each

message we defined four different fields: type, sender, receiver and content. Table 5.3

shows a simple description of four message types that we have defined in our system

related to the learning process. By processing these messages the agents change

their situation and prepare to do different actions. The sender and receiver fields are

IP addresses of the sender and receiver respectively. Based on the different message

types the content could be another different XML document. For example when AgL

queries about a concept by sending the ask about a concept message, the content

consists of a concept identifier, a list of features or a list of objects as we described

in Chapter 4 Section 4.3.

Our agent architecture is based on ontologies and their evolution. An ontology,

the agent’s understandings of the world, is part of the Dat of an agent. The agents

search their ontology to find a concept regarding a query or manipulate it to integrate

a new concept into it. For instance when an agent is confronted with a situation in

which it is asked about a concept, it searches its ontology (i.e. Dat) and if it finds a

concept it performs a set of actions in respect to that situation. It should be noted

that some actions, such as Integrate, change the Dat.

www.manaraa.com

102

Table 5.3: Description of message types
Message type Description
ask about a concept the learner agent uses this message to initiate a

learning session
reply query result using this message the teacher agents send the an-

swer package regarding a concept to the learner
ask to classify the learner agent uses this message to resolve pos-

sible conflicting examples
reply classification result the teacher agent uses this message to vote about a

conflicting example

The query handler implements QueryConcept, ReplyQuery and ReplyClass ac-

tions and is responsible to properly format the outgoing queries and incoming an-

swers. It also converts the incoming queries into a unified form and sends them

to the agent’s decision making engine. Generally this package coordinates agent’s

communication with other agents.

The decision maker is a very important component that makes most of the deci-

sions throughout the life time of an agent and in fact it is responsible for coordinating

the learning process through our general interaction scheme. This component mon-

itors the environment to find out if there is any concept that an agent should learn.

For instance an agent can observe the communication channel to see if there are

any concepts that is its of interest. Prioritizing the shell concepts to be learned in

the future is another responsibility of decision maker. This component also decides

which agents should be contacted for different tasks. The decision maker keeps a

record of the behaviors of other agents to decide which agent is knowledgeable about

which concept.

The ontology learner implements the action Learn. As stated before, we de-

veloped two different learning algorithms to provide our system with different ap-

www.manaraa.com

103

proaches to learning. Naive Bayes [Mit97] and Rocchio [SB91] have been imple-

mented respectively. According to our definition of features we had to change the

basic algorithms of these learners to deal with the features that are not just one

key word. We will discuss them in Section 5.3. This component also forwards any

conflicting examples to the conflict resolver asking for conflict resolution. This con-

flict resolver which implements the action AskClassify starts a conflict resolution

session.

As we stated in Chapter 4 Section 4.7.1 the concept learner Hcj
can classify an

example object ei regarding the concept cj in the agent’s ontology. Therefore this

component is responsible for deciding about incoming queries regarding classification

of an object which again, is forwarded to the conflict resolver. In order to decide

about the conflicting objects that come to the agent to be voted, the concept learner

initiates the action ClassifyEx.

The ontology handler is developed around Jena [jen] which is a Java framework for

building Semantic Web applications (see Section 5.2). This component implements

the actionsFindConcept, SelectBestConcept and Integrate actions. By cooper-

ating with the example selector, the ontology handler helps the concept learner to

select positive and negative examples to answer the incoming queries or feed the in-

terpretation functions. The example selector implements every action that the agent

utilizes to select or create examples or improve their quality.

www.manaraa.com

Chapter 6

Experiments

We have now laid out our methodology, and considered the practical issues involved in

its implementation as well as the implementation of our proof-of-concept prototype.

The discussion in this chapter focuses on the experiments we have conducted with

this prototype. These experiments illustrate all aspect of our approach to multi-

agent learning of concepts. Also, they evaluate the efficiency of different realizations

of some actions that we have defined in our methodology.

To illustrate and evaluate our approach, first we set up the learner agent to learn

some concepts, namely: Computer Science, Mathematics, Greek, Linguistics,

Japanese, Chinese, Chemistry, German and Physics. As we mentioned in Chap-

ter 5 each of these concepts are representing a unit or program in the taxonomy

of a university. Therefore by learning a concept, the learner agent can provide a

university with suggestions for how a unit concerned with that concept should be

characterized. We build our illustration and evaluation around these nine concepts

and in the following sections we present some results either for each of them individ-

ually or report some average results for a group of them. Also it should be noted that

for each of the experiments that we have done, our agents used their full ontologies

even if we report only some on parts of them.

In Section 6.1 we illustrate the formation of a new concept in the learner agent.

We will show how a concept forms in AgL with regard to its key words. This experi-

ment demonstrates how different agents influence the formation of a new concept in

104

www.manaraa.com

105

the learner agent.

In Section 6.2 we assess the performance of the learner agent regarding a newly

learned concept. We train AgL with different percentages of examples of a learned

concept to see how it classifies example objects in the set of all objects in the world.

We also compare the performance of the learner with the teachers and in Section 6.3

we compare the performance of different concept learners.

In Section 6.4 we compare the performance of the different realizations of selecting

positive and negative examples. We will show how these different methods influence

the performance of AgL.

We have proposed three different conflict resolution strategies. In Section 6.5 we

demonstrate the behavior of the learner agent when it utilizes these strategies to

learn a concept. Finally in Section 6.6 we present some examples of our proposed

non-unanimous concepts and illustrate our approach to learning of such a concept

using a case study.

6.1 Concept Formation

To provide a better picture of how our method works, first we take a look at the

formation of concepts in AgL when it learns the concept from different numbers of

agents. By this experiment, we aim to present a qualitative view of the formation of

a new concept in the learner. This qualitative view reveals how a new concept forms

in the form of the features that the learner agent recognizes. In this experiment we

observe the formation of a new concept when different teacher agents get involved in

the learning process. Therefore we can see the influence of a particular teacher agent

www.manaraa.com

106

in the learning process. For this experiment we fixed the teacher agents to randomly

select the positive examples and use the taxonomy to select the negative examples.

Also, in this experiment the learner agent uses the majority voting to resolve the

conflicts and when there are two teacher agents just one vote puts an example in the

majority side.

For a particular query, we observe the relevant parts of the ontologies of the three

teacher agents and study what an agent can learn from these teachers with regard

to that query. The accumulation of different key words in the learner agent for a

particular concept shows how the learner agent shapes its understanding of that

concept.

6.1.1 Learning of Concept “Greek”

Let us assume that the learning agent is supposed to provide someone at a uni-

versity with suggestions for how a unit concerned with Greek should be character-

ized. This learning agent would pose a query by providing a key set out of its own

key set of words, in our example this query key set would be {greek, program,

attic, literature} (as stated in Chapter 4, using an identifier does not make

much sense here). Let us further assume that the relevant concepts in Cbase are Cbase

= {University} and the relevant features in Fbase are created using the key set:

Kbase = {class, course, program, literature, modern, attic, classic,

culture, graduate, seminar, grammar, drama, greek, prose}.

Apparently, different universities can use different key sets of words to express

the area a course belongs to, so that this creates additional features for the different

www.manaraa.com

107

=2m Greek

=12m

Modern
Greek

=3m Classic Studies

=11m
Classic
Greek

=4m College Art
Science Literature

=2c Classic
s

=3c College Art Science

=1c Greek

=2w Classic Studies

=3w College Art Science

=1w Greek

CAg

MAg

WAg

 University University University

Figure 6.1: Relevant taxonomy paths of teachers for Greek

agents. In our example, the relevant key sets for the features used in the agents’

ontologies are:

KC = {prose},

KW = {tragedy, orator, antique} and

KM = { modern, epic, classic, odyssey, ancient, aristotelian}.

By relevant we mean those key words that really occur in the features that these

agents use to characterize the concepts that are related to the query. We used our

technique from Chapter 5 Section 5.1.3 to come up with these relevant key words.

To make things interesting, we give AgL as key set:

www.manaraa.com

108

2l

3l

a)

12l

3l

11l

4l

b)

3l

4l

c)

university university university

1,goalc 2,goalc 3,goalc

12l 11l

attic, prose, greek,
epic, modern,
ancient, classic,
literature

attic, prose,
greek

Formation of
shell concepts

attic, prose, greek, epic,
modern, ancient classic,
literature, tragedy,
antique, orator

Figure 6.2: Formation of the learned concept Greek regarding key words when differ-
ent agents participate in teaching. a) AgC as teacher b) AgC and AgM are teachers
c) AgC , AgM and AgW are teachers

KL = {epic, antique, ancient, tragedy, orator}.

Figure 6.1 presents the paths in the taxonomies of the teachers that our system

selected as the best concepts for the query. The measure used by the system was

calculated as wident × Pident(c) + wfeat ×Mfeat(c) + wobj ×Mobj(c). wident, wfeat and

wobj are weight parameters. In our experiments we used wident = wfeat = wobj = 1.

Pident(c) is 1, if the concept c’s identifier is equal to the identifier in the query and 0

else. The submeasure Mobj(c) counts the number of objects from the query covered

www.manaraa.com

109

Table 6.1: Usage of key words in features

key word AgC AgM AgW AgL(C) AgL(C,M) AgL(C,M,W)
literature 6 19 6 6 12 15
greek 8 55 9 8 26 33
attic 3 8 12 3 11 22
prose 1 0 0 1 1 1
epic 0 3 0 0 3 3
antique 0 0 1 0 0 1
ancient 0 6 0 0 4 4
tragedy 0 0 3 0 0 3
orator 0 0 1 0 0 1

by c and multiplies it by the length of the path to the concept in the taxonomy.

This is then divided by the product of the number of objects in the query and the

maximal length of a path in the taxonomy. The submeasure Mfeat(c) makes use of

the key set in the query. For every feature that is true for c, we check if it is formed

solely by words from the key set. Mfeat(c) is the number of these features divided

by the number of all features that are true for c.

The set of relevant features for this example is still too big to be easily presented.

We used a learner based on Naive Bayes as described in Chapter 5 Section 5.3. To

provide an idea on how the teachers influence what AgL learns, let us look at how

many features include some of the key words. As Table 6.1 shows, (a) to (c) refer

to the concepts learned according to Figure 6.2 (where (a) is learned from AgC , (b)

from AgC and AgM and (c) from all agents). The difference between the features

the different agents know results in rather different numbers for the usage of some

key words to make up for words that an agent cannot use in its features. This is

especially obvious in the base key word set, as the first three examples show.

www.manaraa.com

110

As the above already suggests, the learned concept cgoal is different for different

agents used as teachers. For example, with just AgC as teacher, among the features

enabled in cgoal we have fattic,prose,greek, which is not enabled by any other agent and

also not enabled in the learned concept for the other two scenarios. In the concept

learned from AgC and AgM together, we have the feature using the words classic,

greek, epic, modern, ancient and literature enabled, which is not enabled in

the other two scenarios. Finally, learning from all three teachers results in a feature

using greek, tragedy, antique, orator and attic enabled, which is again, not

used in cases a) and b). Remember that an enabled feature means that each course

covered by the concept that uses the feature contains at least one word from the set

of words associated with the feature.

Figure 6.2 shows the new taxonomy paths created by pre-structuring. The teach-

ers agree on the need for two superconcepts for cgoal and AgM introduced two subcon-

cepts that are added if AgM is one of the teachers. Naturally, we can not associate

meaningful names with these concepts. Although there are too many features identi-

fying them to represent them completely here, we show some of the keywords making

features. The bold words represent the keywords that teachers add to the learner

keywords.

6.1.2 Learning of Concept “Computer Science”

To provide a better understanding of how different viewpoints of agents can affect

the formation of cgoal, we conducted another experiment in which the learner is

assumed to provide some suggestions about how a program concerned with Computer

Science should be characterized. Unlike Greek, the teacher agents have not so

www.manaraa.com

111

much overlap characterizing Computer Science. For instance, AgM organizes it as

an engineering discipline and as a joint program with electrical engineering. AgW

also considers Computer Science as an engineering discipline but independent from

electrical engineering and as a joint program with computer engineering. In AgC

Computer Science is a pure science program in the science faculty.

AgL starts the learning process by submitting a query consisting of {computer,

science, program, system} as key words. We keep Cbase the same as Section 6.1.1

and assume that a part of relevant features in Fbase are created using the key set:

Kbase = {class, course, prerequisite, program, system, design,

computer, science, software, data, design, logic, theory, analysis,

digital, language, parallel, algorithm, network, intelligence,

plasma, artificial, process}

In this example a part of relevant key words for the features used in the agents’

ontologies are:

KC = {knowledge, optimization, formal, search},

KM = {power, circuit, signal, frequency, transition} and

KW = {complexity, information, performance, model, graphics, agent,

image}.

We give AgL as key set:

KL= {artificial, performance, agent, formal, circuit, image,

optimization }.

www.manaraa.com

112

=1m Elec Eng &
Computer Science

=2m College Engineering

=1c Computer Science

=2c College Art Science

=1w Computer Science
 & Eng

=2w College Engineering

CAg MAg WAg

 University University University

Figure 6.3: Relevant taxonomy paths of teachers for Computer Science

We also keep the measures used by the system and their weights unchanged from

the previous section. Figure 6.3 shows the paths in the taxonomies of the teachers

that our system selected as the best concepts for the query. Table 6.2 again provides

an idea on how the teachers can affect what AgL learns regarding the key word set

accumulation which leads to the formation of cgoal.

The process of learning of Computer Science demonstrates how having agents

with different viewpoints can influence key word set formation in AgL. As table 6.2

shows when AgL learns from three agents it drastically decreases the number of key

words from AgM in the final description of cgoal. To make this impact clear let’s take

a closer look at Table 6.2. {signal, circuit, power, plasma} are four key words

from AgM which usually are not frequent in computer science course descriptions.

In fact, these key words are frequent in electrical engineering course descriptions

and their appearance in the key word set of AgM shows the mixed nature of the

concept for this agent (i.e. electrical engineering and computer science). As column

www.manaraa.com

113

Table 6.2: Usage of key words in features for Computer Science

key word AgC AgM AgW AgL(C) AgL(C,M) AgL(C,M,W)
computer 52 75 71 48 75 135
software 10 19 25 9 18 36
network 12 11 14 11 17 39

intelligence 8 3 6 8 10 14
science 17 19 16 17 28 40

knowledge 25 0 0 22 19 18
optimization 13 0 0 7 6 6

formal 11 0 0 4 4 3
search 4 0 0 2 2 2
signal 0 24 0 0 22 7
circuit 0 14 0 0 12 5
power 0 12 0 0 11 4
plasma 0 4 0 0 2 0
agent 0 0 2 0 0 1

performance 0 0 14 0 0 11
graphics 0 0 9 0 0 6
image 0 0 6 0 0 3

(b) shows these four key words make a significant contribution in the formation of

cgoal when AgC and AgM are teachers. Because our conflict resolution policy allows

every example object to be included in the final description of cgoal when we have

two agents as teachers, in this case, AgL accepts every example from the teacher

agents. Adding AgW to the teachers makes a drastic change in the formation of

cgoal regarding these keywords from AgM . The number of appearances of keywords

changes to 7, 5, 4, and 0 from 22, 12, 11, and 2. Due to the fact that AgC and

AgW have close viewpoints on Computer Science, they naturally reject many of

the examples which are reflecting electrical engineering aspect of the concepts from

AgM .

With just AgC as teacher, among the features enabled in cgoal we have:

fparallel,search,optimization and fformal,language,

www.manaraa.com

114

 1,goalc

 2,goalc 3,goalc

 a) b) c)

 university university university

computer, software,
network, network,
intelligence, science,
knowledge, formal,
optimization, search

computer, software,
network, network,
intelligence, science,
knowledge, formal,
optimization, search,
signal, circuit,
power, plasma

computer, software,
network, network,
intelligence, science,
knowledge, formal,
optimization, search,
signal, circuit, power,
agent, performance,
graphics, image

Formation of
shell concepts

Figure 6.4: Formation of Computer Science regarding key words when different
agents participate in teaching. a) AgC as teacher b) AgC and AgM are teachers c)
AgC , AgM and AgW are teachers

with AgC and AgM we have:

fcircuit,design,system, fartificial,intelligent,agent and fsignal,plasma,

and with all agents as teachers we have:

fperformance,analysis and fdigital,image,process.

The important point here is that after learning cgoal from three agents, AgL does not

establish fsignal,plasma as an enabled feature. That is because {plasma} is not a key

word in the final description of cgoal in column (c).

www.manaraa.com

115

Figure 6.4 shows the new taxonomy paths created by pre-structuring and the for-

mation of key words for the concept Computer Science. Although the paths from

different agents seem smooth and easy to integrate they are not similar. As stated

before, AgM and AgW consider Computer Science as a sub-concept of engineering

while AgC considers it as a sub-concept of science. Our integration algorithm pro-

duced a shell concept with characteristics of Engineering as the superconcept of

Computer Science.

6.2 Concepts in Action

It is very important to assess the performance of the learner agent regarding a newly

learned concept. As stated before our main concern in this thesis is to have agents

learn concepts to improve communication. Needless to say, to communicate about

a concept, an agent must distinguish an instance of the concept (i.e.an object) from

other instances. Based on this fact, we conducted an experiment to see how AgL

classifies objects in U (i.e the set of all possible objects) when it learns a new concept.

In this experiment we fixed the teacher agents to select the positive and negative

examples based on our improved version of example selection that we discussed in

Chapter 4 Section 4.6. Also we fixed the learner agent to use the majority voting

scheme to resolve the conflicts.

As we discussed in Chapter 4 Section 4.7.2, according to the different conflict

resolution mechanisms that AgL chooses, it has different sets of examples to learn

from. These different sets shown in Figure 4.5 using different boundaries, affect

the quality of the learned concept. By accepting the union boundary, the learner

www.manaraa.com

116

Table 6.3: Truly classified examples for concepts Mathematics, Computer Science

and Greek

n% Mathematics Computer Science Greek
Positive
Out of
501

Negative
Out of
18560

% Positive
Out of
505

Negative
Out of
18556

% Positive
Out of
171

Negative
Out of
18890

%

10 400 13125 70 324 11375 61 128 13906 74
20 458 14157 77 339 11934 64 134 14551 76
30 460 15290 82 346 12307 66 142 14958 79
40 472 15267 82 354 12494 67 154 15681 83
50 481 15358 83 367 13053 70 159 16254 86
60 485 15501 83 380 13426 72 163 16808 89
70 484 15691 84 391 13613 73 165 17193 91
80 489 15886 85 399 14172 76 167 17005 90
90 495 16765 90 423 14731 79 170 16995 90
100 497 17324 93 429 15104 81 170 16991 90

accepts the positive examples which the group of agents are non-unanimous about,

naturally this set has a maximum number of positive examples compared with other

boundaries. The majority area has the positive examples that the majority of agents

have agreed upon. While the number of positive examples in this area is less than

the union area, it is more than the number of examples in the intersection area.

These different sets of positive examples directly affect the quality of the learned

concept and consequently the performance of the learner agent. Nevertheless, it is

not guaranteed that the performance of the concept with the union boundary is

better than the intersection boundary. A common scenario is that due to the fact

that different teachers have different viewpoints, accepting every positive example

(which makes the example set bigger) as a part of the learned concept (i.e union

area) scatters the viewpoint of the learner and declines its performance. As we

stated before, the most popular way of relying on a group decision is to follow the

www.manaraa.com

117

majority of votes. Therefore, for this experiment, we have chosen the set of examples

from the majority area to be learned by AgL.

Using the same set up as Section 6.1, we enabled AgL to learn three different

concepts Greek, Computer Science and Mathematics. We allowed AgL to use the

examples from the majority boundary as the representative examples of the concept.

Then we trained the learner using different percentages of positive examples in this

area (i.e. n% column). These percentages show us the classification accuracy of AgL

when the learner does not utilize the maximum number of available examples from

the teachers. That is the case when due to the communication cost, the teachers

could not send every possible example that they possess to the learner. Table 6.3

shows the classification results of the learner for the three different concepts. In fact

this table shows the number of truly classified examples both for positive examples

and negative examples in two separate columns. We should mention that, when we

consider the area that a majority of agents agreed upon as the boundary for the

concept in the learner, every other examples will be tested as the negative examples

by AgL in the testing process. This includes the positive examples that are in

the union area and are not in the majority area. For instance and for concept

Mathematics, the majority set has 501 positive examples and the other objects (i.e

19061-501=18560) could be considered as negative examples for it.

One interesting preliminary result, that in fact we expected, was the significant

increase of truly classified examples when the concept is mostly unanimous. For

example the programs Mathematics and Greek have more common courses than

Computer Science among three different universities (which also is very true among

other universities). As Table 6.3 shows the accuracy result for Mathematics is much

www.manaraa.com

118

better than Computer Science. The last row of Table 6.3 shows the performance of

the learner when it is trained by the whole set of examples it possess for each concept.

For instance, the second and third columns show that AgL classified 497 positive and

17324 negative examples out of 501 positive and 18560 negative examples. Therefore

AgL classified 93% ((497+17324)/(501+18560)) of objects correctly for Mathematics

while this accuracy is 81% ((429+15104)/(505+18556)) for Computer Science and

90% ((170+16991)/(171+18890)) for Greek. There is a small “dip” in Greek when

AgL is trained by 70% of examples when the accuracy jumps to 91% and then comes

back to 90%. Despite this ”dip” the learner shows a consistent behavior classifying

positive examples. We conclude that having agents with close viewpoints helps the

learner to have a concrete understanding of a concept which naturally leads to a

learner with better performance.

In this experiment we also compare the performance of the learner with the

teacher agents. To compare the performance ofAgL with the teacher agents we had to

compare the classification capability of AgL with AgW , AgC , and AgM respectively.

As we discussed in Chapter 4, we assume that the teacher agents have learned the

concepts in their ontology before they start to teach a concept to the learner. This

learning has been achieved using some supervised inductive learning mechanisms and

using the example objects that in each agent are associated with every concept in its

ontology. Therefore we are supposed to simply compare the classification efficiency

of AgL with AgW , AgC , and AgM .

Nevertheless we can not guarantee that AgL learns a concept using the same

number of examples as each teacher agent and as we mentioned earlier the more

examples are provided to the agent the better a classifier it can learn. This possibility

www.manaraa.com

119

causes an unbalanced situation in which AgL and other agents can not be compared.

To overcome this problem, we have to prepare a fair situation in which the learner

agent classification efficiency could be compared with each teacher agent. Therefore

we selected a fragment of positive examples in AgL which is quantitatively equal with

the number of positive examples in each teacher agent to train AgL with the same

number of examples that the teacher agents utilized to learn the concept before.

Table 6.4: Comparison of the performance of AgL and AgM

concepts Truly classified
examples by
AgL

Truly classified
examples by
AgM

% of
example
from
AgL

Mathematics 15859 83.2% 15886 83.3% 53%
Computer
Science

12962 68.0% 11009 57.7% 43%

Greek 17011 89.2% 16719 87.7% 68%

Table 6.5: Comparision of the performance of AgL and AgW

concepts Truly classified
examples by
AgL

Truly classified
examples by
AgW

% of
example
from
AgL

Mathematics 15780 82.7% 15756 82.6% 44%
Computer
Science

12533 65.7% 11788 61.8% 28%

Greek 15492 81.2% 15121 79.3% 35%

Table 6.4, 6.5 and 6.6 show the results of comparisons of AgL with AgM , AgW

and AgC respectively. The second column in every table shows the number of truly

classified examples, both positive and negative, out of 19061 test examples (i.e.

objects in U) by AgL. The third column shows the number of truly classified

www.manaraa.com

120

Table 6.6: Comparision of the performance of AgL and AgC

concepts Truly classified
examples by
AgL

Truly classified
examples by
AgC

% of
example
from
AgL

Mathematics 15163 79.5% 15086 79.1% 26%
Computer
Science

12805 67.1% 12112 63.5% 39%

Greek 14894 78.1% 14597 76.5% 24%

examples by the teacher agent and finally the forth row shows the percentage of

examples that AgL has been trained with, to produce this result. For instance

the first row of Table 6.4 shows that AgL has truly classified 15859 examples out

of 19061 when it is trained by 53% of the whole set of its positive examples for

Mathematics. The third column indicates that 15886 example objects are truly

classified by AgM . The last column indicates that the number of associated examples

with concept Mathematics in AgM is 53% of examples in AgL. A very interesting

outcome of this experiment is that AgL in the most cases has a better performance

than the teachers regarding the learned concept.This emphasizes on the fact that

AgL learns the compromise concept and its learning reflects a mutual viewpoint of

agents. Therefore it will perform better when it tests against the objects from the

whole world.

As an example concept, if we look at the Computer Science we see that AgL

is doing better compared to the other agents. For instance its accuracy is 68%

(12962/19061) when it is trained by 43% of the training examples(see table 6.4).

Clearly this is a better performance thanAgM which has classified 57.7% (11009/19061)

truly. These results also confirm our preliminary result which we discussed in Sec-

www.manaraa.com

121

tion 6.1.2 regarding the formation of Computer Science. Here we see that AgL

classifies 10.3% better than AgM while this margin is 3.9% for AgW and 3.6% for

AgC . We believe that this is because the viewpoint of the learner is closer to AgW

and AgC and as we showed in Section 6.1.2 the compromise concept in AgL does

not have so much of the characteristics of Computer Science from AgM . Therefore

AgL is doing much better in classifying objects from U .

The story is different for Mathematics. The performance of the AgL is worse

than AgM(i.e. 83.2% vs 83.3%) but it is better than AgW (i.e. 82.7% vs 82.6%) and

AgC (i.e. 79.5% vs 79.1%) . This observation shows that the performance of the

learner is close to the performance of other agents and that is because Mathematics

is more unanimous than Computer Science which makes the viewpoints close to

each other.

6.3 Comparison of Concept Learners

To compare the performance of the two concept learners that we are using we used the

same setup as in Section 6.2. We allowed the learner agent to create its features using

only combinations of two or three words. The substitutivities are made in a random

manner. For the Rocchio algorithm we set β to 0.25 based on the recommendation

from [BSA94]. Other assumptions were kept unchanged from the previous section.

Figure 6.5, 6.6 and 6.7 show the comparison of the performance of our naive Bayes

and Rocchio learner for the same three concepts of the previous section. Clearly the

naive Bayes concept learner outperforms the Rocchio in all three example concepts.

Therefore throughout the experiments in this thesis we use the naive Bayes as the

www.manaraa.com

122

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

A
cc

ur
ac

y

Size of training set

Naive Bayes
Rocchio

Figure 6.5: Comparison of concept learners for Mathematics

default concept learner for AgL.

6.4 Better Concepts Using Improved Example Selection

An important question to evaluate our method is how efficient it is to have an agent

learn a new concept. Clearly, the more examples are provided to this agent the

better it can learn. But more examples mean more communication overhead, more

learning effort and more chances for confusion between the different teachers. One

way to better utilize the communication channel is to send a set of examples that

conveys more information to AgL. In this section we present the experiments that

we have conducted to see how such improved examples influence the quality of the

learned concept.

As stated in Chapter 4 Section 4.6, we proposed two alternative instantiations for

positive and negative example selections. In this section we compare these instanti-

www.manaraa.com

123

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250 300

A
cc

ur
ac

y

Size of training set

Naive Bayes
Rocchio

Figure 6.6: Comparison of concept learners for Computer Science

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

A
cc

ur
ac

y

Size of training set

Naive Bayes
Rocchio

Figure 6.7: Comparison of concept learners for Greek

www.manaraa.com

124

ations. We introduced the is-similar-to relation to select negative examples. We

compared the performance of AgL with the situation in which the negative examples

are selected only using the taxonomy. To compare different instantiation of positive

example selection, we fixed the negative example selection on selection using the

is-similar-to relation. Then we compared the proposed methods and observed

the superiority of positive examples selection using discriminative features over the

random selection.

6.4.1 Using more Than the Taxonomy

Using the general setup of our multi-agent system, we conducted an experiment in

which AgL posed queries regarding a concept. We enabled the teachers to create and

send two different sets of negative examples: the first set was created just by using

subconcept and superconcept relations (i.e. the taxonomy) and for the second set

in addition to the information from the taxonomy we used the information provided

by the is-similar-to relation. We enabled agents to select positive examples ac-

cording to our instantiation from Chapter 4 Section 4.6.2. Then we observed the

quality of cgoal created by the learner to see how better the concept works in classify-

ing the whole objects in U . We repeated the experiment for nine different concepts

and we present the result for two concepts individually and the average result for

the whole nine concepts.

Each data point in Figure 6.8 represents the average value of 5 runs, since the

selection of negative examples is performed randomly by the teachers out of the sets

they consider.

Since there is not really a total agreement on what courses constitute Mathematics

www.manaraa.com

125

(beyond a certain strong core, naturally) there is no possibility to achieve 100 percent

accuracy. In fact, it can be already debated what accuracy means in our context,

since there is no clearly defined concept AgL is supposed to learn. Similar to our ex-

periments of Section 6.2, every course classified under Mathematics by the majority

of the three teachers was expected to be a positive example, all others a negative

one. Figure 6.8 shows that using the is-similar-to relation greatly enhances accu-

racy (especially for small numbers of exchanged examples), due to providing well fo-

cused negative examples. AgC has in its ontology that Mathematics is-similar-to

Theoretical and Applied Mechanics, Computer Science, and Operations Research

and Industrial Engineering, whileAgM has it similar to Statistics, Geological

Sciences and Astronomy, andAgW to Statistics, Aeronautics and Astronautics

and Earth and Space Sciences. Especially for the range between 50 and 100

training examples, which means 17 to 34 examples per teacher agent, the usage

of is-similar-to clearly pays off. Note that the “dips” in accuracy are not only

due to presenting an average here, more examples also means that more conflicts

between teachers occur (remember that using the test set as we do means that a

conflict always results in a potential misclassification).

Using the setup of Section 6.1.1 we repeated the experiment for the concept

Greek. AgC has in its ontology that Greek is-similar-to Classical Civilization,

Classical Art and Archaeology and Romance Studies, while AgM has it similar

to Classical Archaeology and Near Eastern Studies , and AgW to classics and

Romance Language and Literature. As Figure 6.9 shows, once more we see a

significant improvement for the range between 50 and 100 training examples. There

is a “dip” when we use 100 training examples which means the performance of

www.manaraa.com

126

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

A
cc

ur
ac

y

Size of training set

taxonomy and is_similar_to
taxonomy

Figure 6.8: Comparison of negative example selection mechanisms for Mathematics

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

A
cc

ur
ac

y

Size of training set

taxonomy and is_similar_to
taxonomy

Figure 6.9: Comparison of negative example selection mechanisms for Greek

www.manaraa.com

127

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250 300

A
cc

ur
ac

y

Size of training set

taxonomy and is_similar_to
taxonomy

Figure 6.10: Comparison of negative example selection mechanisms for nine concepts

the learner has been affected by potential conflicts. Figure 6.10 shows the average

result for nine concepts that we tested and demonstrates the superiority of selecting

negative examples both from taxonomy and the is-similar-to relation.

Table 6.7, 6.8 and 6.9 shows the tabular representation of result for Mathematics

and Greek and the average for nine concepts.

Table 6.7: Tabular representation of comparison of negative example selection mech-
anisms for Mathematics

n% Taxonomy and is-similar-to Taxonomy
10 0.702 0.552
20 0.773 0.629
30 0.824 0.625
40 0.820 0.630
50 0.823 0.667
60 0.835 0.679
70 0.844 0.691
80 0.855 0.715
90 0.910 0.797
100 0.931 0.756

www.manaraa.com

128

Table 6.8: Tabular representation of comparison of negative example selection mech-
anisms for Greek

n% Taxonomy and is-similar-to Taxonomy
10 0.736 0.625
20 0.770 0.649
30 0.792 0.657
40 0.830 0.730
50 0.861 0.737
60 0.890 0.760
70 0.912 0.835
80 0.908 0.812
90 0.902 0.803
100 0.904 0.796

Table 6.9: Tabular representation of comparison of negative example selection mech-
anisms for nine concepts

n% Taxonomy and is-similar-to Taxonomy
10 0.572 0.425
20 0.618 0.519
30 0.614 0.543
40 0.648 0.551
50 0.686 0.560
60 0.729 0.609
70 0.740 0.615
80 0.768 0.632
90 0.806 0.680
100 0.839 0.756

6.4.2 Using more Distinctive Positive Examples

In this section, we evaluate the effectiveness of our method in selection of better pos-

itive examples. Based on our algorithms from Chapter 4 Section 4.6.2 we changed

the process of positive example selection to enable the teacher agents to reflect their

specific “viewpoint” by selecting some examples that they think are more distinc-

tive positive examples. Similar to the previous section we present the result of our

experiments for Greek and Mathematics and the average result for nine concepts.

www.manaraa.com

129

Table 6.10: Comparison of positive example selection mechanisms for Greek

n% Distinctive Set Random Set1 Random Set2 Random Set3
10 0.736 0.627 0.542 0.631
20 0.770 0.639 0.563 0.637
30 0.792 0.707 0.572 0.652
40 0.830 0.712 0.603 0.703
50 0.861 0.737 0.645 0.729
60 0.890 0.722 0.669 0.748
70 0.912 0.794 0.704 0.733
80 0.908 0.802 0.737 0.761
90 0.902 0.783 0.719 0.799
100 0.904 0.796 0.741 0.811

Table 6.11: Comparison of positive example selection mechanisms for Mathematics

n% Distinctive Set Random Set1 Random Set2 Random Set3
10 0.702 0.691 0.611 0.707
20 0.773 0.719 0.658 0.712
30 0.824 0.721 0.693 0.767
40 0.820 0.752 0.704 0.765
50 0.823 0.798 0.768 0.794
60 0.835 0.811 0.790 0.819
70 0.844 0.813 0.789 0.824
80 0.855 0.828 0.808 0.836
90 0.910 0.852 0.824 0.830
100 0.931 0.860 0.842 0.852

To instantiate Algorithm 1 and 2 for our context we first used our similarity

function (see Chapter 4 Section 4.6.1) to find k nearest hits for each document

example ei. The same process is accomplished to find k nearest miss documents.

To calculate feature weights, W , we needed to realize a diff function which was

compatible with our context. As we discussed in Chapter 5 Section 5.1.3 we build our

features in the form of key word combinations. In fact to instantiate the diff function

we are interested in the boolean value of each feature. Therefore for a feature fa,b,c

we define

www.manaraa.com

130

Table 6.12: Comparison of positive example selection mechanisms for nine concepts

n% Distinctive Set Random Set1 Random Set2 Random Set3
10 0.572 0.447 0.439 0.509
20 0.618 0.511 0.483 0.525
30 0.614 0.530 0.529 0.520
40 0.648 0.534 0.531 0.605
50 0.686 0.548 0.576 0.628
60 0.729 0.581 0.612 0.698
70 0.740 0.611 0.627 0.711
80 0.768 0.674 0.684 0.754
90 0.806 0.745 0.709 0.788
100 0.839 0.767 0.723 0.804

diff(fa,b,c, ei, ej) =


0; value(fa,b,c, ei) = value(fa,b,c, ej) = true

0; value(fa,b,c, ei) = value(fa,b,c, ej) = false

1; otherwise

For the first experiment, we assumed that the learning agent is supposed to learn

the concept Greek (see Table 6.10). Based on the assumptions from Section 6.1.1,

we enabled our agents to apply Algorithm 1 to come up with the core features

representing the unique viewpoint of each agent. The subset of the core feature key

set which is not common with Kbase, for each agents were as follows:

CFC ={democritus, religion, english, herodotus, medieval}

CFW = {tragedy, orator, antique, myths, archeology}

CFM = {modern, epic, classic, odyssey, ancient, aristotelian}.

Then we changed the agents to extract positive examples according to CF and

using Algorithm 2. In the learner side and in order to evaluate the efficiency of our

method in selecting distinctive positive examples, we first trained the learner with

www.manaraa.com

131

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

A
cc

ur
ac

y

Size of training set

Distinctive Set
Random Set-1
Random Set-2
Random Set-3

Figure 6.11: Graphical representation of comparison of positive example selection
mechanisms for Greek

the set of distinctive positive examples and test it against the set of all example

objects in U . The second column in Table 6.10 shows the percentage of the truly

classified examples by AgL when it is trained by distinctive positive examples. To see

how our method of selecting better positive examples improves the performance of

the learner, we repeated the learning process three times and for each trial we asked

teachers to select a random set of positive examples out of the associated positive

examples.

As Table 6.10 shows, we see a significant improvement of 9.3 point difference

(i.e. 90.4%-81.1%) in AgL when it is trained by distinctive positive examples. This

improvement emphasizes on the fact that by selecting better positive examples, the

teacher agents help the learner to learn more accurate compromise concepts which

consequently improves the future communication.

We repeated the experiment for the concept Mathematics. Again the result shows

www.manaraa.com

132

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

A
cc

ur
ac

y

Size of training set

Distinctive Set
Random Set-1
Random Set-2
Random Set-3

Figure 6.12: Graphical representation of comparison of positive example selection
mechanisms for Mathematics

an improvement (i.e. 93.1%-86.0% = 7.1%) in performance of AgL (see Table 6.11).

In addition to Mathematics and Greek we repeated our experiment for seven other

concepts. Table 6.12 shows the average result for nine concepts. The average result

also confirms our preliminary results of Greek and Mathematics.

Figure 6.12, 6.11 and 6.13 show the graphical representation of comparison of

different positive example selection mechanisms for Mathematics and Greek and

average result for nine concept.

6.5 Evaluation of Conflict Resolution Strategies

As already stated, each possible conflict resolution method will come up with some

concept for the learner’s ontology. Based on which mechanism AgL uses to learn

a concept its behavior varies when it communicates with other agents. To observe

www.manaraa.com

133

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250 300

A
cc

ur
ac

y

Size of training set

Distinctive Set
Random Set-1
Random Set-2
Random Set-3

Figure 6.13: Graphical representation of comparison of positive example selection
mechanisms for nine concepts

this behavior we allowed AgL to learn a specific concept using the different conflict

resolution strategies and then we monitored its classification accuracy when it is

presented with examples from different boundaries of the non-unanimous concept

that it has learned. For instance, this experiment shows how a learner behaves

when it is trained by the set of “all agree” examples (i.e. which naturally has been

produced by the “all agree” conflict resolution mechanism) how it would classify the

examples from cperiphery area. This will show us the behavior of the learner when

it is learned a concept using a specific conflict resolution strategy and communicate

with other agents which have different perceptions of the same concept.

More specifically to evaluate each strategy we allowed AgL to be trained by the

positive examples regarding that strategy for a specific concept. Then we tested it

against ccore, cown, and cperiphery respectively to see how these strategies affect the

learner’s capability of classifying examples related to the learned concept.

www.manaraa.com

134

Strategy ccore cown cperiphery

All agree 427/434 485/501 518/541
Majority agree 434/434 497/501 527/541
One agree 434/434 498/501 531/541

Table 6.13: Conflict resolution evaluation for Mathematics

Table 6.13 shows the evaluation results for Mathematics. The first row shows the

truly classified positive examples out of the maximum number of positive examples

in ccore, cown and cperiphery when it is trained by the examples that “all” agents agreed

upon. The second row shows the same statistics when AgL is trained by the examples

that “majority” agents agreed upon and finally the third row shows the result when

AgL is trained by the examples that only “one” agent consider them as an example

of concept.

As it is expected, the number of false negatives increases when AgL classifies

examples cperiphery. For instance when AgL is trained by “all agree” examples it

misclassified 16 positive examples from cperiphery. This confirms our expectation

because cperiphery contains every possible positive examples regarding Mathematics

andAgL which is trained by the “all agree” set might not accept all of these examples.

As we move from cperiphery toward ccore false negatives decreases and that is because

the positive examples are in the core of the concepts and the teachers are unanimous

about them. Concept Mathematics is a somehow unanimous concept and in most

cases AgM , AgC and AgW have the same points of view to the examples. On the

other hand, Computer Science is rather a scattered concept and as we showed

in Section 6.1.2 the teacher agents have very different viewpoints to it. This is

www.manaraa.com

135

Strategy ccore cown cperiphery

All agree 180/188 417/505 468/565
Majority agree 184/188 429/505 479/565
One agree 184/188 442/505 488/565

Table 6.14: Conflict resolution evaluation for Computer Science

nicely reflected in Table 6.14 where we present the result of the performance of

AgL respecting different conflict resolution strategies in the formation of Computer

Science. Unlike Mathematics in which we don’t see any false negatives in the

ccore column in the second and third row, here we see 4 false negatives when AgL

is trained by “one agree” and tested against ccore. Similar to Mathematics we see

the number of false negatives decreases when we broaden the border of accepted

examples (i.e. moving from “all agree” to “majority agree” and “one agree”). For

instance AgL produced 97(565 - 468), 86(565 - 479), and 77(565 - 488) false negatives

out of cperiphery when it is trained by the different outcomes of the conflict resolution

strategies. For the same reason that we presented for Mathematics the number of

false negatives decreases when we move from cperiphery toward ccore.

As it is expected, AgL has a better performance classifying the examples from ccore

and when the boundary stretched to cown and cperiphery the performance decreases.

On the other hand the “one agree” strategy behaves better than “majority agree”

and “all agree”. It is also expected because of the increase in the number of the

training examples in “one agree” strategy.

www.manaraa.com

136

Unit ccore cown cperiphery

Mathematics 434 501 541
Computer Science 188 505 565
Linguistics 203 283 346

Table 6.15: Some positive example statistics

6.6 Non-unanimous Concepts: a Case Study

Borrowing information from our last experiment, in Table 6.15 we present some

statistics on three concepts, namely the number of objects (i.e. courses) that are in

the three concepts within a non-unanimous concept. As it is expected the difference

between the core and the periphery for Computer Science is rather large, and even

for Linguistics there is still quite a number of courses for which the three uni-

versities differ in their categorization. Nevertheless this is not true for the concept

Mathematics which is a more unanimous concept. Table 6.16 presents some exam-

ple objects (i.e. courses) belonging to Mathematics and Linguistics in different

boundaries.

For instance regarding Mathematics, all universities agree that the courses with

titles Calculus I and Mathematical Logic are in ccore. But, for example, a course

with the name Combinatorial Theory was not classified into Mathematics by AgC ,

while Model Theory did not find the approval by AgW . On the other hand, Pre

Calculus is just approved by AgW . This shows that being able to deal with differ-

ences in opinion between agents is something that agents need to be able to do.

www.manaraa.com

137

Border Linguistics Mathematics

ccore Topics in Linguistics

Historical Linguistics

Introduction to Linguistics

Sound Patterns

Linguistic Typology

Calculus I

Mathematical Logic

Algebra I

Linear Algebra

Mathematical Models

cown Introduction to

Sociolinguistics

Language and Mind

Philosophy and Linguistics

Ethnolinguistics

Anthropological Linguistics

History of Mathematics

Combinatorial Theory

Model Theory

Mathematics of Finance

Mathematical Applications

cperiphery Mathematical Linguistics

Language and Gender

Interactive Discourse

Language North America

Languages South Asia

Mathematical Biology

Applied Mathematics III

Pre Calculus

Actuarial Science

Topics in Modern

Mathematics

Table 6.16: Examples of courses(objects) in ccore, cown, and cperiphery

for Mathematics and Linguistics

www.manaraa.com

138

6.6.1 Group Communication: An Example

As already stated, we were not so surprised to see a lot of objects in cperiphery that are

not in ccore for the concept Computer Science. This is due to the fact that already

the taxonomies of the three agents were rather different with regard to where they

put the Computer Science concept. For example, AgM runs the Computer Science

program as a program within the Engineering faculty as does AgW . In contrast to

this, AgC has the Department of Computer Science in its Science faculty. This also

means that AgL favors for its cown (for Computer Science) the more engineering

view, but, in contrast with what we see from time to time with real human agents, it

is aware of the potential for misunderstandings due to using non-unanimous concepts.

Consider the following communication problem: AgL as representant of a new

university that learned their structure from AgM , AgW , and AgC is giving a talk on

its university in front of agents from many North-American universities. One of the

points of the talk is to tell the other agents that at AgL’s university, all courses in

the Computer Science program are taught by real professors (no instructors).

Table 6.17 shows some example objects belonging to Computer Science in dif-

ferent boundaries. Due to learning from the three teachers (that we assume to rep-

resent the extremes with regard to opinions on what is part of a Computer Science

program, simply because they are the places that are providing the data), AgL

has Computer Science as a non-unanimous concept. For example, in its ccore for

Computer Science it has courses with names like Computer Programming I, Design

and Analysis of Algorithms II, Computer Networks, or Computer Architecture

that have course descriptions that all teacher agents classify into Computer Science.

www.manaraa.com

139

Some of the courses that only one of the teachers voted for as belonging to Computer

Science have the names Reliable Computing Systems, Computational Molecular

Biology, Computers and Society, or Computational Tools for Finance.

Border Computer Science

ccore Computer Programming I

Design and Analysis of Algorithms II

Computer Science Research Seminar

Introduction to Artificial

Intelligence

Computer Networks

Introduction to Computer Organization

Computer Architecture

Foundations of Computer Science

Interactive Computer Graphics

cown Applied Logic

Theory of Computing

Computer System Performance

Computer Game Design and Development

Parallel Computing

Computational Geometry

Introduction to Formal Models in

Computer Science

cperiphery Computational Molecular Biology

Computational Tools and Methods for

Finance

Computers and Society

Intelligent Transportation Systems

Introduction to Logic Design

Reliable Computing Systems

Table 6.17: Examples of courses(objects) in ccore, cown, and cperiphery

for Computer Science

Among the 193 courses that are not in ccore but in cown for Computer Science

of AgL are, for example, courses named Theory of Computing, Introduction to

www.manaraa.com

140

Formal Models, Applied Logic, Parallel Computing, or Computer Game Design

and Development. If we would set the parameter exmax of Chapter 4 Section 4.8.3

to 1, then AgL would enhance its communication about no instructors in Computer

Science by using something like:

In Computer Science including Theory of Computing, we are not using any

instructors.

This is because we have the following values for the cover function: cover(Theory

of Computing) = 5, cover(Introduction to Formal Models) = 4, cover(Applied

Logic) = 3, cover(Parallel Computing) = 3, cover(Computer Game Design and

Development) = 2, cover(Computer System Performance) = 2, and cover(Comput-

ational Geometry) = 2.

Naturally, exmax = 1 still leaves room for misunderstandings (in fact, without

stating all 193 courses there is always room for misunderstandings), but for ex-

max = 3 we first add Parallel Computing to the communication about Computer

Science. The cover values for Introduction to Formal Models and Applied

Logic are greatly reduced in the next rounds, since they are using the same fea-

tures as Theory of Computing. We then get the following communication:

In Computer Science including Theory of Computing and Parallel Computing

we are not using any instructors.

In the last round the cover value for Computer System Performance is reduced due

to the fact that it uses the same features as Parallel Computing. Therefore we

add Computer Game Design and Development and Computational Geometry to

www.manaraa.com

141

the communication about Computer Science. The communication should promote

to the following:

In Computer Science including Theory of Computing, Parallel Computing,

Computer Game Design and Development and Computational Geometry we are

not using any instructors.

www.manaraa.com

Chapter 7

Conclusion and Future work

This chapter draws conclusion on the research presented in this dissertation, and

provides possible suggestions for future work. At the start of our research, learning

of ontology concepts among a group of agents with diverse ontology were largely

constrained by two factors. First, all of the approaches assumed that agents are

committed to a common set of features and conceptualized the world by these fea-

tures. This assumption at most, leaves agents diversity of conceptualization of world

at the ontology level in which agents use the same set of features to represent the

ontology concepts. Second, the collaboration among agents to learn a concept from

each other is restricted to one to one collaboration. This model of collaboration

simply eliminate the critical problem of conflict resolution which is non-evitable in

group collaboration.

We set out to propose a methodology that enable researchers to extend their idea

to have an agent that learns a concept from group of agents utilizing not necessarily

the same set of features to conceptualize the world. To do this we uses techniques

from a number of areas. In particular, we borrowed from machine learning, in which

researchers have already developed a plenty of techniques for learning in different

contexts.

Section 7.1 briefly summaries our methodology, the main contribution of this

research and the prototype system that we developed as a proof of concept. Then

in Section 7.3 we provide some suggestions for possible extensions of this work.

142

www.manaraa.com

143

7.1 Summery

As already stated, we have developed a method that demonstrates how an agent

can learn new concepts for its ontology with the help of several other agents. This

assumes that not all agents have the same ontology. We additionally assumed that

there are only some base features that are known and can be recognized by all agents

and that there are only some base symbolic concepts that are known to all agents

by name, their feature values for the base features and the objects that are covered

by them. Outside of this common knowledge, individual agents may come with

additional features they can recognize and additional concepts they know. Given

this setting, agents will develop problems in working together, since the common

grounds for communication are not always there. To come up with a solution for

this problem, agents need to acquire the concepts outside of the set of base concepts

that other agents have, at least those concepts that are needed to establish the

necessary communication to work together on a given task.

We also assumed that the learner agent has an ontology and knows a set of

specific set of features. Analogously, each teacher agent has an ontology, and also

knows a specific set of features. For any concept known to the a teacher agent, this

agent has in its data areas a set of positive examples that it can use to teach the

concept to another agent. Part of the action set of the learner agent are actions

that: query other agents regarding a concept, ask other agents to classify a concept,

learn a concept from a set of positive and negative examples , and integrate a newly

leaned concept in its ontology. Also part of the action set of the teacher agents are

the actions that: search the ontology to find the best matching concept with the

www.manaraa.com

144

query, create a set of negative example regarding a queried concept, reply to a query,

and classify an example and send the result back to the learner.

We proposed a general interaction scheme in which we generalized the interaction

among agents regarding the learning process as the following. After becoming aware

that there is a concept that it needs to learn, The learner agent poses a query. The

learner agent uses three parameters to have three different ways to identify to the

teachers what the learner is interested in. The first one is the parameter identifier

which allows the learner to refer to a concept name it observed from other agents,

which means that identifier is a known concept for some agent(s). The second way

is the combination of some features and their values which enable the learner to use

a selection of features and their values that thinks are related to the goal concept.

The third way is the set of some objects that the learner thinks are covered by the

goal concept.

Each teacher agent then reacts to the learner’s query by finding the best concept

that covers the queried concept. Naturally, already each of the parameters can point

to different concepts that a teacher agent knows of. In fact, if the learner provides

several objects in the set of queried objects, they might be classified by the teacher

into several of its concepts. So, the teacher first collects all the concepts that fulfill

the query into a candidate set and then it has to evaluate all these concepts to

determine the concept that is the best fit. To select the “best” candidate out of

many candidate concepts, there are many different ways how an evaluation of the

candidates can be performed. Each of the three query parts can contribute to a

measure that defines what is “best”, but how these contributions are combined can

be realized differently.

www.manaraa.com

145

While supplying the learner with more examples normally produces better results,

in our case we have to take into account that the more objects are selected as

positive and negative examples the more expensive the communication becomes and

the more effort the learner will have to spent on learning. On the other hand,

less examples usually means less precise learning result. Therefore the number of

examples communicated to the learner by each agent is a parameter of our system

and reflects the wishes of a user. So, in the next step, each teacher selects the

given number of elements out of the set of positive examples, for the best candidate

concept. There are many possible ways how this selection process can be done. We

proposed two different realizations. The first one was random sampling of the set of

positive examples. In the second method we established our selection based on the

reflection of the viewpoints of the teacher agents. Similar to the behavior of human

beings, the teacher agents express their viewpoints with the features that they think

are more discriminatory. Then they use these features to extract more distinctive

positive examples which naturally characterize the queried concept better. After

selecting positive examples, the teacher agents produce a given number of (good)

negative examples for the best concept. Since every concept other than the best

candidate concept (and its subconcepts) can be categorized as a counter concept,

the number of objects associated with these concepts is often very high. This big

volume of possible negative examples makes the selection of a subset of them a crucial

task. The best negative examples are objects that “nearly” are in the set covered

by the best candidate, a kind of “near-misses” that allow to highlight the borders of

a concept. The fact that our agents have ontologies allows us to do a better job in

selecting negative examples than just randomly selecting out of all candidate objects.

www.manaraa.com

146

To show this more accurately we used both taxonomy information (siblings of the

best candidate concept) and a relation is-similar-to to select the concepts from

which we randomly selected examples.

The last action which is performed by a teacher agent before the initiative goes

back to the learner is to reply to the learner which sends the result back to the

learner. part of the reply package is the path information that contains the path in

the ontology of the teacher leading to the candidate concept and the taxonomy tree

below the concept. Then the learner collects the answers from all teachers and then

uses a concept learner to learn the goal concept from the combined set of examples.

Naturally, the concept learner only uses features and their values from its own set of

features. In case of conflicts between the teacher agents, the learner employs one of

several methods to resolve these conflicts. For example, the learner agent goes back

to the teacher agents and ask them to classify these examples according to the best

candidate concept they used to produce their examples. The learner then treat the

answers as votes and include all positive examples for which a majority of the teachers

voted, while requiring the exclusion of all negative examples for which a majority

voted. This produces some kind of compromise concept that might appeal to most

of the teachers. As the final step of our scheme, the learner uses the learned goal

concept and the collected paths from the other agents to construct a new ontology

path leading to the goal concept within its ontology. The key information used in

this integration with pre-structuring is the path information send by the teacher

agents in their answers to the query. The pre-structuring uses these paths to create

shells for concepts that might be useful for future communications. These shells can

also be used to indicate to an agent concepts it might want to learn in the future

www.manaraa.com

147

and potential queries for them. The result of this learning/teaching scheme is the

description of goal concept in terms of the learner’s feature set and an updated

ontology.

We also extended our preliminary definition of a concept in an ontology that

allows an agent to simultaneously communicate with a group of agents that might

have different understandings of some concepts. We also provided a way to learn

such non-unanimous concepts by using a method for learning concepts from a group

of teachers. The general idea of non-unanimous concepts is to use the teachers to

identify the core of a concept everyone agrees on and what else at least some of

the teachers think belongs into the concept. The learning agent also decides what

belongs to the concept for itself and whenever it needs to communicate with a group

of other agents and needs to be precise it makes use of these three concept aspects

by providing additional example objects for what might be misunderstood.

7.2 Contributions

In this section, we reconsider each of three areas of our contributions in light of what

has been presented in this dissertation.

7.2.1 Agents with Diverse Set of Features

We set out to develop a methodology for agents teaching one other agent concept in

which agents not only may not want to commit to an ontology a priori but also not

use the same set of features to represent the ontology concepts. We assumed that

there are only some base features that are known, respectively can be recognized by

www.manaraa.com

148

all agents. Outside of this common set of features, individual agents may come with

additional features they can recognize. Our proof-of-concept prototype confirmed

that agents teaching concepts to one other is achievable when they are not using a

common set of features and this preserve the essential ontological promiscuity of AI.

7.2.2 A Group of Agents Teaching One Agent

Early on in our dissertation we mentioned that, at first appearance, learning from

a group of agents instead of a single agent only seems to add potential problems,

namely the teachers might not agree on some aspects of a concept to learn so that it

is up to the learning agent to decide on these aspects on its own. But being able to

address a group of agents is a necessity of multi-agent communication. In our thesis

we addressed the group collaboration to teach a new concept to an agent. Despite

the arisen problems, we proposed a general interaction scheme to resolve the conflicts

among agents and to come up with a new multi-boundary concept.

7.2.3 Non-unanimous Concepts

We proposed the novel idea of non-unanimous ontology concepts that allows us to

express different “shades” of agreements on a particular concept based on what an

agent learns from a group of teacher agents. Also we provided an environment to

enable agents to learn such non-unanimous concepts that represent a whole spectrum

of possible definitions for a concept. We defined three different boundaries for every

non-unanimous concept. The core boundary is the area that all agents view are

consistent about it and there is no conflict among agents regarding the objects in this

area. The periphery boundary is the area that covers all teacher agents’ viewpoints.

www.manaraa.com

149

The learner agent itself then chooses a concept definition that encompasses the core

and is itself encompassed by the periphery which we called it own boundary.

7.3 Future Directions

This section focuses on future directions for the framework that has been presented

in this thesis. There are many opportunities for further research in this challenging

area. The following are the suggested research area.

7.3.1 Learning Relations

As stated in Chapter 2, one really interesting part of ontologies are the relations

that a particular ontology allows. This is also the part where we see a lot of dif-

ferences between different authors. In general, all possible relations between tuples

of concepts can be used in ontologies, but usually researchers assume a small set of

build-in relations and tool developers sometimes throw in the possibility to have user-

defined relations. A possible future direction will be the extension of our proposed

methodology to enable agents to learn relations. Here there are two sub-points:

• learning rule sets to allow an agent to learn relations from other agents: The

solution should address ideas on what rule learners might be useful (i.e. in-

ductive learners), what changes to the scheme for concepts might be necessary,

and how to address conflicts between teachers.

• finding an analogue to non-unanimous concepts for relations: Obviously agents

can be non-unanimous about a relation. The solution would start with going

back to the basics, namely what a relation is supposed to be and try to propose

www.manaraa.com

150

a definition about what a core and periphery relation might be. The solution

also might associate some probabilities to the relations.

7.3.2 Ontology Reorganization

A potential interesting research area will be the use of our method and its ability

to deal with different feature sets to deal with the loss of the ability to perceive one

or several features by rearranging (re-learning) the parts of the ontology that are

unclear due to the feature loss. This is obviously not a multi-agent topic anymore,

but is something that there is obviously potential for more exploration.

7.3.3 Applying Concepts

To see the strength of our methodology we suggest a research direction in which

our general ideas are applied to a real product application. A potential applica-

tion would be a distributed text based document management system that is partly

managed by IBM Unstructured Information Management Architecture. UIMA is an

open, industrial-strength, scalable and extensible platform for creating, integrating

and deploying unstructured information management solutions from combinations

of semantic analysis and search components. While UIMA can manage the local

ontology for an agent our proposed methodology can help agents to evolve their

ontologies collaboratively.

www.manaraa.com

Bibliography

[AF06] Mohsen Afsharchi and Behrouz H. Far. Improving example selection

for agents teaching ontology concepts. In CIA, volume 4149 of Lecture

Notes in Computer Science, pages 228–242. Springer, 2006.

[AFD06a] Mohsen Afsharchi, Behrouz H. Far, and Jörg Denzinger. Learning non-

unanimous ontology concepts to communicate with groups of agents.

In Proceedings of The IEEE/WIC/ACM International Conference on

Intelligent Agent Technology (IAT-06), pages 211–217, 2006.

[AFD06b] Mohsen Afsharchi, Behrouz H. Far, and Jörg Denzinger. Ontology-

guided learning to improve communication between groups of agents. In

Proceedings of the Fifth International Conference on Autonomous Agents

and Multi-agent Systems (AAMAS06), pages 923–930, 2006.

[AK97] Naveen Ashish and Craig A. Knoblock. Semi-automatic wrapper gener-

ation for internet information sources. In Proceedings of International

Conference on Cooperative Information Systems, pages 160–169, 1997.

[BLHL01] Tim. Berners-Lee, James. Hendler, and Ora. Lassila. The semantic web.

Scientific American, 284(5):34–43, 2001.

[BSA94] Chris Buckley, Gerard Salton, and James Allan. The effect of adding rel-

evance information in a relevance feedback environment. In Proceedings

of the 17th annual international conference on Research and development

151

www.manaraa.com

152

in information retrieval(SIGIR94), pages 292–300. Springer-Verlag New

York, Inc., 1994.

[BSSD00] Dipyaman Banerjee, Sabyasachi Saha, Sandip Sen, and Prithviraj Das-

gupta. Learning mutual trust. In Working Notes of AGENTS-00 Work-

shop on Deception, Fraud and Trust in Agent Societies, pages 9–14. 2000.

[Cha00] Hans Chalupsky. Ontomorph: A translation system for symbolic knowl-

edge. In Principles of Knowledge Representation and Reasoning: Pro-

ceedings of the Seventh International Conference (KR2000), San Fran-

cisco, CA, 2000. Morgan Kaufmann.

[DE02] Jörg Denzinger and Sean Ennis. Being the new guy in an experienced

team: enhancing training on the job. In Proceedings of First Interna-

tional Joint Conference on Autonomous Agents and Multi-Agent Sys-

tems(AAMAS02), pages 1246–1253. ACM, 2002.

[Dou04] Dejing Dou. Ontology translation by ontology merging and automated

reasoning. PhD thesis, New Haven, CT, USA, 2004.

[FFMM94] Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. KQML

as an Agent Communication Language. In Proceedings of the 3rd

International Conference on Information and Knowledge Management

(CIKM’94), pages 456–463, Gaithersburg, MD, USA, 1994. ACM Press.

[GF92] Michael. R. Genesereth and Richard. E. Fikes. Knowledge interchange

format, version 3.0 reference manual. Technical Report Logic-92-1, Com-

www.manaraa.com

153

puter Science Department, Stanford University, Stanford, CA, USA,

June 1992.

[GN87] Michael. R. Genesereth and Nils. J. Nilsson. Logical Foundations of

Artificial Intelligence. Morgan Kauffman Publishers. Inc, Palo Alto,

CA, 1987.

[GO94] Thomas R. Gruber and Gregory R. Olsen. An ontology for engineer-

ing mathematics. In Proceedings of KR’94: Principles of Knowledge

Representation and Reasoning, pages 258–269. Morgan Kaufmann, San

Francisco, California, 1994.

[Gru91] Thomas R. Gruber. The role of common ontology in achieving sharable,

reusable knowledge bases. In Proceedings of the Second Iniernanonal

Conference on Principles of Knowledge Representation and Reasoning,

pages 601–602, 1991.

[Gru93] Thomas R. Gruber. Translation approach to portable ontology specifi-

cations. Knowledge Acquisition, 2:l99–220, 1993.

[Gua97] Nicola. Guarino. Semantic matching: Formal ontological distinctions for

information organization, extraction, and integration. Lecture Notes in

Computer Science, 1299:139–170, 1997.

[Hov98] Eduard. Hovy. Combining and standardizing large-scale, practical on-

tologies for machine translation and other uses. In Proceedings of

the 1st. International Conference on Language Resourcesand Evaluation

(LREC), pages 535–542, 1998.

www.manaraa.com

154

[jen] Jena a semantic web framework for java . http://jena.sourceforge.

net/. As seen on Sep 20, 2006.

[JvD06] Frank Dignum Rogier M. van Eijk John-Jules Ch. Meyer Jurriaan van

Diggelen, Robbert-Jan Beun. ANEMONE: An effective minimal ontol-

ogy negotiation environment. pages 899–906, 2006.

[KS99] Atanas. Kiryakov and Kiril Iv. Simov. Ontologically supported semantic

matching. In Proceedings of the Nordic Conference on Computational

Linguistics(NoDaLiDa’99)., 1999.

[KS02] Yanis Kalfoglou and Marco Schorlemmer. Information flow based ontol-

ogy mapping. In Proceedings of the 1st International Conference on On-

tologies, Databases and Application of Semantics (ODBASE’02), Irvine,

CA, USA, pages 1132–1151, 2002.

[LASB04] Agapito Ledezma, Ricardo Aler, Araceli Sanch́ıs, and Daniel Bor-

rajo. Predicting opponent actions by observation. In Proceedings of

RoboCup04, volume 3276 of Lecture Notes in Computer Science, pages

286–296. Springer, 2004.

[LG01] Martin S. Lacher and Georg Groh. Facilitating the exchange of explicit

knowledge through ontology mappings. In Proceedings of the Fourteenth

International Florida Artificial Intelligence Research Society Conference,

Florida, USA, pages 305–309. AAAI Press, 2001.

[MDHD02] Jayant Madhavan, Pedro Domingos, Alon Y. Halevy, and AnHai Doan.

www.manaraa.com

155

Learning to map between ontologies on the semantic web. In Proceedings

of the World-Wide Web Conference (WWW-2002), pages 662–673, 2002.

[Mel00] Sergey Melnik. Declarative mediation in distributed systems. In Pro-

ceedings of International Conference on Conceptual Modeling (ER’00),

pages 66–79, 2000.

[Mit97] Tom Mitchell. Machine Learning. McGraw-Hill, 1997.

[MW04] Prasenjit Mitra and Gio Wiederhold. An ontology-composition algebra.

In Steffen Staab and Rudi Studer, editors, Handbook on Ontologies, In-

ternational Handbooks on Information Systems, pages 93–116. Springer,

2004.

[MWK00] Prasenjit Mitra, Gio Wiederhold, and Martin L. Kersten. A graph-

oriented model for articulation of ontology interdependencies. In Pro-

ceedings of 7th International Conference on Extending Database Tech-

nology EDBT 2000, volume 1777 of Lecture Notes in Computer Science,

pages 86–100. Springer, 2000.

[Nil98] Nils. J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kauff-

man Publishers. Inc, 1998.

[NM00] Natalya Noy and Mark A. Musen. PROMPT: Algorithm and tool

for automated ontology merging and alignment. In Proceedings of

Twelfth Conference on on Innovative Applications of Artificial Intelli-

gence (AAAI/IAAI-2000), pages 450–455, 2000.

www.manaraa.com

156

[NM03] Natalya F. Noy and Mark A. Musen. The prompt suite: interactive tools

for ontology merging and mapping. International Journal of Human and

Computer Studies, 59(6):983–1024, 2003.

[owl] Owl - web ontology language. http://www.w3.org/TR/owl-features/.

As seen on Sep 20, 2006.

[PH96] Foster J. Provost and Daniel N. Hennessy. Scaling up: Distributed ma-

chine learning with cooperation. pages 74–79, 1996.

[PL05] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The

state of the art. Autonomous Agents and Multi-Agent Systems,

11(3):387–434, 2005.

[PLL96] Nagendra M.V. Prasad, Victor Lesser, and Susan Lander. Learning orga-

nizational roles in a heterogeneous multiagent system. In Working Notes

for the AAAI Symposium on Adaptation, Co-evolution and Learning in

Multiagent Systems, pages 72–77, Stanford University, CA, 1996.

[pro] Protege an ontology editor and knowledge-base framework. http://

protege.stanford.edu/. As seen on Sep 20, 2006.

[PS03] Fuchun Peng and Dale Schuurmans. Combining naive bayes and n-gram

language models for text classification. In Proceedings of The 25th Eu-

ropean Conference on Information Retrieval Research (ECIR03), 2003.

[RiK03] Marko Robnik-ikonja and Igor Kononenko. Theoretical and empirical

analysis of relieff and rrelieff. Machine Learning, 53(1-2):23–69, 2003.

www.manaraa.com

157

[RK91] Elaine. Rich and Kevin. Knight. Artificial Intelligence. McGraw Hill,

1991.

[RN95] Stuart Russell and Peter Norvig. Artificial Intelligence: a Modern Ap-

proach. Prentice-Hall, 1995.

[Roc71] J.J. Rocchio. Relevance feedback in information retrieval. In Gerald

Salton, editor, The SMART Retrieval System Experiments in Automatic

Document Processing, International Handbooks on Information Systems,

page Chapter 14. Prentice Hall, 1971.

[Sah96] Mehran Sahami. Learning limited dependence Bayesian classifiers. In

Proceedings of Second International Conference on Knowledge Discovery

in Databases, 1996.

[SB91] Gerard Salton and Chris Buckley. Automatic text structuring and re-

trieval: Experiments in automatic encyclopedia searching. In Proceed-

ings of the 14th Annual International Conference on Research and De-

velopment in Information Retrieval (SIGIR91), pages 21–30, 1991.

[Sen02] Sandip. Sen. Sharing a concept. In the Working Notes of the AAAI-02

Spring Symposium on Collaborative Learning Agents (AAAI Tech Report

SS-02-02), 2002.

[SGH04] Larry M. Stephens, Aurovinda K. Gangam, and Michael N. Huhns. Con-

structing consensus ontologies for the semantic web: A conceptual ap-

proach. World Wide Web, 7(4):421–442, 2004.

www.manaraa.com

158

[She99] Amit. P. Sheth. Changing focus on interoperability in information sys-

tems: from system, syntax, structure to semantics. pages 5 – 30, 1999.

[SM01] Gerd Stumme and Alexander Maedche. FCA-MERGE: Bottom-Up

merging of ontologies. In Proceedings of the seventeenth International

Conference on Artificial Intelligence (IJCAI-01), pages 225–234, San

Francisco, CA, 2001. Morgan Kaufmann Publishers, Inc.

[SM02] Erhard. Rahm Sergey Melnik, Hector. Garcia-Molina. Similarity flood-

ing: A versatile graph matching algorithm and its application to schema

matching. In Proceedings of the 18th International Conference on Data

Engineering (ICDE ’02), pages 117–129, Washington, DC, USA, 2002.

IEEE Computer Society.

[SPF02] Yun Peng Sushama Prasad and Tim Finin. A tool for mapping between

two ontologies using explicit information. In Proceedings of Workshop

on Ontologies and Agent Systems, AAMAS02, 2002.

[SRV00] Peter Stone, Patrick Riley, and Manuela M. Veloso. Defining and us-

ing ideal teammate and opponent agent models. In Proceedings of

Twelfth Conference on on Innovative Applications of Artificial Intelli-

gence (AAAI/IAAI-2000), pages 1040–1045, 2000.

[Ste98] Luc. Steels. The origins of ontologies and communication conventions

in multi-agent systems. Autonomous Agents and Multi-Agent Systems,

1(2):169–194, 1998.

www.manaraa.com

159

[Stu02] Gerd Stumme. Using ontologies and formal concept analysis for organiz-

ing business knowledge. In Wissensmanagement mit Referenzmodellen -

Konzepte fr die Anwendungssystem- und Organisationsgestaltung, pages

163–174. 2002.

[Tan97] Ming Tan. Multi-agent reinforcement learning: Independent vs. coop-

erative learning. In Michael N. Huhns and Munindar P. Singh, editors,

Readings in Agents, pages 487–494. Morgan Kaufmann, San Francisco,

CA, USA, 1997.

[UIl] Illinois semantic integration archive.. http://anhai.cs.uiuc.edu/

archive/. As seen on Sep 20, 2006.

[UMi] University of michigan academic units. http://www.umich.edu/units.

php. As seen on Sep 20, 2006.

[VH01] Richard Vdovjak and Geert-Jan Houben. RDF-based architecture for

semantic integration of heterogeneous information sources. In Proceed-

ings of the International Workshop on Information Integration on the

Web, pages 51–57, 2001.

[Wei99] Gerhard Weiß, editor. Multiagent Systems: A Modern Approach to Dis-

tributed Artificial Intelligence. MIT Press, Cambridge, MA, USA, 1999.

[WG02] Jun. Wang and Les. Gasser. Mutual online concept learning for mul-

tiple agents. In Proceedings of the First Iniernanonal Conference on

Autonomous Agents and Multi-Agent Systems (AAMAS02), pages 362–

369, 2002.

www.manaraa.com

160

[Wie97] Gio Wiederhold. Mediators in the architecture of future information

systems. In Michael N. Huhns and Munindar P. Singh, editors, Readings

in Agents, pages 185–196. Morgan Kaufmann, San Francisco, CA, USA,

1997.

[Wil04] Andrew. B. Williams. Learning to share meaning in a multi-agent sys-

tem. Autonomous Agents and Multi-Agent Systems, 8(2):165–193, 2004.

[Woo91] William. A. Woods. Understanding subsumption and taxonomy: A

framework for progress. In J. F. Sowa, editor, Principles of Seman-

tic Networks: Explorations in the Representation of Knowledge, pages

45–94. Morgan Kaufmann Publishers, San Mateo (CA), USA, 1991.

[WPB03] Andrew Williams, Anand Padmanabhan, and Brian M. Blake. Local

consensus ontologies for b2b-oriented service composition. In Proceedings

of the second international joint conference on Autonomous agents and

multiagent systems (AAMAS03), pages 647–654, 2003.

[YP97] Yiming Yang and Jan O. Pedersen. A comparative study on feature

selection in text categorization. In Proceedings of 14th International

Conference on Machine Learning (ICML-97), pages 412–420, 1997.

